Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Li Jun, Yan Rui, Zhao Bin, Zheng Jian, Zhang Huasen, Lu Xiyun. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport[J]. Matter and Radiation at Extremes, 2022, 7(5): 055902. doi: 10.1063/5.0088058
Citation: Li Jun, Yan Rui, Zhao Bin, Zheng Jian, Zhang Huasen, Lu Xiyun. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport[J]. Matter and Radiation at Extremes, 2022, 7(5): 055902. doi: 10.1063/5.0088058

Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport

doi: 10.1063/5.0088058
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: ruiyan@ustc.edu.cn and xlu@ustc.edu.cn; a)Authors to whom correspondence should be addressed: ruiyan@ustc.edu.cn and xlu@ustc.edu.cn
  • Received Date: 2022-02-12
  • Accepted Date: 2022-07-24
  • Available Online: 2022-09-01
  • Publish Date: 2022-09-01
  • The effects of electron nonlocal heat transport (NLHT) on the two-dimensional single-mode ablative Rayleigh–Taylor instability (ARTI) up to the highly nonlinear phase are reported for the first time through numerical simulations with a multigroup diffusion model. It is found that as well as its role in the linear stabilization of ARTI growth, NLHT can also mitigate ARTI bubble nonlinear growth after the first saturation to the classical terminal velocity, compared with what is predicted by the local Spitzer–Härm model. The key factor affecting the reduction in the linear growth rate is the enhancement of the ablation velocity Va by preheating. It is found that NLHT mitigates nonlinear bubble growth through a mechanism involving reduction of vorticity generation. NLHT enhances ablation near the spike tip and slows down the spike, leading to weaker vortex generation as the pump of bubble reacceleration in the nonlinear stage. NLHT more effectively reduces the nonlinear growth of shorter-wavelength ARTI modes seeded by the laser imprinting phase in direct-drive laser fusion.
  • loading
  • [1]
    L. Rayleigh , Scientific Papers II (Cambridge University Press, Cambridge, England, 1900), p. 200.
    [2]
    G. I. Taylor , “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
    [3]
    Y. Zhou , “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,” Phys. Rep. 720–722, 1–136 (2017).10.1016/j.physrep.2017.07.005
    [4]
    Y. Zhou , “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II,” Phys. Rep. 723–725, 1–160 (2017).10.1016/j.physrep.2017.07.008
    [5]
    J. D. Lindl , Inertial Confinement Fusion (Springer, New York, 1998).
    [6]
    S. Atzeni and J. Meyer-ter-Vehn , The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater (Oxford University, 2004).
    [7]
    R. Betti and O. A. Hurricane , “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [8]
    A. B. Zylstra , O. A. Hurricane , D. A. Callahan , A. L. Kritcher , J. E. Ralph , H. F. Robey , J. S. Ross , C. V. Young , K. L. Baker , D. T. Casey et al. , “Burning plasma achieved in inertial fusion,” Nature 601, 542–548 (2022).10.1038/s41586-021-04281-w
    [9]
    A. Kritcher , C. Young , H. Robey , C. Weber , A. Zylstra , O. Hurricane , D. Callahan , J. Ralph , J. Ross , K. Baker , D. Casey , D. Clark , T. Döppner , L. Divol , M. Hohenberger , L. Hopkins , S. Pape , N. Meezan , and A. Pak , “Design of inertial fusion implosions reaching the burning plasma regime,” Nat. Phys. 18, 251 (2022).10.1038/s41567-021-01485-9
    [10]
    A. Burrows , “Supernova explosions in the universe,” Nature 403, 727–733 (2000).10.1038/35001501
    [11]
    V. N. Gamezo , A. M. Khokhlov , E. S. Oran , A. Y. Chtchelkanova , and R. O. Rosenberg , “Thermonuclear supernovae: Simulations of the deflagration stage and their implications,” Science 299, 77 (2003).10.1126/science.1078129
    [12]
    C. C. Kuranz , H. S. Park , C. M. Huntington , A. R. Miles , B. A. Remington , T. Plewa , M. R. Trantham , H. F. Robey , D. Shvarts , A. Shimony , K. Raman , S. MacLaren , W. C. Wan , F. W. Doss , J. Kline , K. A. Flippo , G. Malamud , T. A. Handy , S. Prisbrey , C. M. Krauland , S. R. Klein , E. C. Harding , R. Wallace , M. J. Grosskopf , D. C. Marion , D. Kalantar , E. Giraldez , and R. P. Drake , “How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants,” Nat. Commun. 9, 1564 (2018).10.1038/s41467-018-03548-7
    [13]
    D. T. Casey , J. L. Milovich , V. A. Smalyuk , D. S. Clark , H. F. Robey , A. Pak , A. G. MacPhee , K. L. Baker , C. R. Weber , T. Ma , H.-S. Park , T. Döppner , D. A. Callahan , S. W. Haan , P. K. Patel , J. L. Peterson , D. Hoover , A. Nikroo , C. B. Yeamans , F. E. Merrill , P. L. Volegov , D. N. Fittinghoff , G. P. Grim , M. J. Edwards , O. L. Landen , K. N. Lafortune , B. J. MacGowan , C. C. Widmayer , D. B. Sayre , R. Hatarik , E. J. Bond , S. R. Nagel , L. R. Benedetti , N. Izumi , S. Khan , B. Bachmann , B. K. Spears , C. J. Cerjan , M. Gatu Johnson , and J. A. Frenje , “Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive,” Phys. Rev. Lett. 115, 105001 (2015).10.1103/physrevlett.115.105001
    [14]
    S. P. Regan , R. Epstein , B. A. Hammel , L. J. Suter , H. A. Scott , M. A. Barrios , D. K. Bradley , D. A. Callahan , C. Cerjan , G. W. Collins , S. N. Dixit , T. Döppner , M. J. Edwards , D. R. Farley , K. B. Fournier , S. Glenn , S. H. Glenzer , I. E. Golovkin , S. W. Haan , A. Hamza , D. G. Hicks , N. Izumi , O. S. Jones , J. D. Kilkenny , J. L. Kline , G. A. Kyrala , O. L. Landen , T. Ma , J. J. MacFarlane , A. J. MacKinnon , R. C. Mancini , R. L. McCrory , N. B. Meezan , D. D. Meyerhofer , A. Nikroo , H. S. Park , J. Ralph , B. A. Remington , T. C. Sangster , V. A. Smalyuk , P. T. Springer , and R. P. Town , “Hot-spot mix in ignition-scale inertial confinement fusion targets,” Phys. Rev. Lett. 111, 045001 (2013).10.1103/PhysRevLett.111.045001
    [15]
    J. Lindl , O. Landen , J. Edwards , and E. Moses , “Review of the National Ignition Campaign 2009–2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [16]
    O. A. Hurricane , D. A. Callahan , D. T. Casey , P. M. Celliers , C. Cerjan , E. L. Dewald , T. R. Dittrich , T. Döppner , D. E. Hinkel , L. F. B. Hopkins , J. L. Kline , S. Le Pape , T. Ma , A. G. MacPhee , J. L. Milovich , A. Pak , H.-S. Park , P. K. Patel , B. A. Remington , J. D. Salmonson , P. T. Springer , and R. Tommasini , “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008
    [17]
    C. R. Weber , T. Döppner , D. T. Casey , T. L. Bunn , L. C. Carlson , R. J. Dylla-Spears , B. J. Kozioziemski , A. G. MacPhee , A. Nikroo , H. F. Robey , J. D. Sater , and V. A. Smalyuk , “First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility,” Phys. Rev. Lett 117, 075002 (2016).10.1103/PhysRevLett.117.075002
    [18]
    J. Sanz , “Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73, 2700–2703 (1994).10.1103/physrevlett.73.2700
    [19]
    R. Betti , V. N. Goncharov , R. L. McCrory , P. Sorotokin , and C. P. Verdon , “Self-consistent stability analysis of ablation fronts in inertial confinement fusion,” Phys. Plasmas 3, 2122 (1996).10.1063/1.871664
    [20]
    R. Betti , V. N. Goncharov , R. L. McCrory , and C. P. Verdon , “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
    [21]
    H. Takabe , K. Mima , L. Montierth , and R. Morse , “Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676–3682 (1985).10.1063/1.865099
    [22]
    J. D. Kilkenny , S. G. Glendinning , S. W. Haan , B. A. Hammel , J. D. Lindl , D. Munro , B. A. Remington , S. V. Weber , J. P. Knauer , and C. P. Verdon , “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).10.1063/1.870688
    [23]
    V. Lobatchev and R. Betti , “Ablative stabilization of the deceleration phase Rayleigh-Taylor instability,” Phys. Rev. Lett. 85, 4522–4525 (2000).10.1103/physrevlett.85.4522
    [24]
    B. Srinivasan and X.-Z. Tang , “Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization,” Europhys. Lett. 107, 65001 (2014).10.1209/0295-5075/107/65001
    [25]
    S. W. Haan , “Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes,” Phys. Rev. A 39, 5812–5825 (1989).10.1103/physreva.39.5812
    [26]
    S. W. Haan , “Weakly nonlinear hydrodynamic instabilities in inertial fusion,” Phys. Fluids B 3, 2349–2355 (1991).10.1063/1.859603
    [27]
    D. Layzer , “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
    [28]
    V. N. Goncharov , “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
    [29]
    J. Sanz , J. Ramírez , R. Ramis , R. Betti , and R. P. J. Town , “Nonlinear theory of the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 89, 195002 (2002).10.1103/physrevlett.89.195002
    [30]
    J. Sanz , R. Betti , R. Ramis , and J. Ramírez , “Nonlinear theory of the ablative Rayleigh–Taylor instability,” Plasma Phys. Controlled Fusion 46, B367–B380 (2004).10.1088/0741-3335/46/12b/032
    [31]
    R. Betti and J. Sanz , “Bubble acceleration in the ablative Rayleigh-Taylor instability,” Phys. Rev. Lett. 97, 205002 (2006).10.1103/physrevlett.97.205002
    [32]
    R. Yan , R. Betti , J. Sanz , H. Aluie , B. Liu , and A. Frank , “Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability,” Phys. Plasmas 23, 022701 (2016).10.1063/1.4940917
    [33]
    S. X. Hu , V. A. Smalyuk , V. N. Goncharov , S. Skupsky , T. C. Sangster , D. D. Meyerhofer , and D. Shvarts , “Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on omega,” Phys. Rev. Lett. 101, 055002 (2008).10.1103/PhysRevLett.101.055002
    [34]
    L. Spitzer and R. Härm , “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977–981 (1953).10.1103/physrev.89.977
    [35]
    A. R. Bell , R. G. Evans , and D. J. Nicholas , “Elecron energy transport in steep temperature gradients in laser-produced plasmas,” Phys. Rev. Lett. 46, 243–246 (1981).10.1103/physrevlett.46.243
    [36]
    M. Holec , J. Nikl , and S. Weber , “Nonlocal transport hydrodynamic model for laser heated plasmas,” Phys. Plasmas 25, 032704 (2018).10.1063/1.5011818
    [37]
    W. A. Farmer , O. S. Jones , M. A. Barrios , D. J. Strozzi , J. M. Koning , G. D. Kerbel , D. E. Hinkel , J. D. Moody , L. J. Suter , D. A. Liedahl , N. Lemos , D. C. Eder , R. L. Kauffman , O. L. Landen , A. S. Moore , and M. B. Schneider , “Heat transport modeling of the dot spectroscopy platform on NIF,” Plasma Phys. Controlled Fusion 60, 044009 (2018).10.1088/1361-6587/aaaefd
    [38]
    R. J. Henchen , M. Sherlock , W. Rozmus , J. Katz , D. Cao , J. P. Palastro , and D. H. Froula , “Observation of nonlocal heat flux using Thomson scattering,” Phys. Rev. Lett. 121, 125001 (2018).10.1103/physrevlett.121.125001
    [39]
    K. Shigemori , H. Azechi , M. Nakai , M. Honda , K. Meguro , N. Miyanaga , H. Takabe , and K. Mima , “Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light,” Phys. Rev. Lett. 78, 250–253 (1997).10.1103/physrevlett.78.250
    [40]
    H. Azechi , M. Nakai , K. Shigemori , N. Miyanaga , H. Shiraga , H. Nishimura , M. Honda , R. Ishizaki , J. G. Wouchuk , H. Takabe et al. , “Direct-drive hydrodynamic instability experiments on the GEKKO XII laser,” Phys. Plasmas 4, 4079–4089 (1997).10.1063/1.872528
    [41]
    S. G. Glendinning , S. N. Dixit , B. A. Hammel , D. H. Kalantar , M. H. Key , J. D. Kilkenny , J. P. Knauer , D. M. Pennington , B. A. Remington , R. J. Wallace , and S. V. Weber , “Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets,” Phys. Rev. Lett. 78, 3318–3321 (1997).10.1103/physrevlett.78.3318
    [42]
    T. Sakaiya , H. Azechi , M. Matsuoka , N. Izumi , M. Nakai , K. Shigemori , H. Shiraga , A. Sunahara , H. Takabe , and T. Yamanaka , “Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry,” Phys. Rev. Lett. 88, 145003 (2002).10.1103/physrevlett.88.145003
    [43]
    V. A. Smalyuk , S. X. Hu , V. N. Goncharov , D. D. Meyerhofer , T. C. Sangster , D. Shvarts , C. Stoeckl , B. Yaakobi , J. A. Frenje , and R. D. Petrasso , “Rayleigh-Taylor growth stabilization in direct-drive plastic targets at laser intensities of ∼1 × 1015 W/cm2 ,” Phys. Rev. Lett. 101, 025002 (2008).10.1103/physrevlett.101.025002
    [44]
    M. Honda , K. Mima , K. Shigemori , M. Nakai , H. Azechi , and A. Nishiguchi , “Effects of non-local electron thermal transport on ablative Rayleigh-Taylor instability,” Fusion Eng. Des. 44, 205–208 (1999).10.1016/s0920-3796(98)00284-1
    [45]
    R. C. Malone , R. L. McCrory , and R. L. Morse , “Indications of strongly flux-limited electron thermal conduction in laser-target experiments,” Phys. Rev. Lett. 34, 721 (1975).10.1103/physrevlett.34.721
    [46]
    G. P. Schurtz , P. D. Nicolaï , and M. Busquet , “A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,” Phys. Plasmas 7, 4238–4249 (2000).10.1063/1.1289512
    [47]
    P. L. Bhatnagar , E. P. Gross , and M. Krook , “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511–525 (1954).10.1103/physrev.94.511
    [48]
    A. Marocchino , M. Tzoufras , S. Atzeni , A. Schiavi , P. D. Nicolaï , J. Mallet , V. Tikhonchuk , and J.-L. Feugeas , “Comparison for non-local hydrodynamic thermal conduction models,” Phys. Plasmas 20, 022702 (2013).10.1063/1.4789878
    [49]
    M. Sherlock , J. P. Brodrick , and C. P. Ridgers , “A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion,” Phys. Plasmas 24, 082706 (2017).10.1063/1.4986095
    [50]
    J. P. Brodrick , R. J. Kingham , M. M. Marinak , M. V. Patel , A. V. Chankin , J. T. Omotani , M. V. Umansky , D. Del Sorbo , B. Dudson , J. T. Parker et al. , “Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications,” Phys. Plasmas 24, 092309 (2017).10.1063/1.5001079
    [51]
    D. Cao , G. Moses , and J. Delettrez , “Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations,” Phys. Plasmas 22, 082308 (2015).10.1063/1.4928445
    [52]
    H. Zhang , R. Betti , V. Gopalaswamy , R. Yan , and H. Aluie , “Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers,” Phys. Rev. E 97, 011203(R) (2018).10.1103/physreve.97.011203
    [53]
    H. Zhang , R. Betti , R. Yan , D. Zhao , D. Shvarts , and H. Aluie , “Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions,” Phys. Rev. Lett. 121, 185002 (2018).10.1103/physrevlett.121.185002
    [54]
    J. Xin , R. Yan , Z.-H. Wan , D.-J. Sun , J. Zheng , H. Zhang , H. Aluie , and R. Betti , “Two mode coupling of the ablative Rayleigh-Taylor instabilities,” Phys. Plasmas 26, 032703 (2019).10.1063/1.5070103
    [55]
    B. Van Leer , “On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe,” SIAM J. Sci. Stat. Comput. 5, 1–20 (1984).10.1137/0905001
    [56]
    E. F. Toro , M. Spruce , and W. Speares , “Restoration of the contact surface in the HLL-Riemann solver,” Shock Waves 4, 25–34 (1994).10.1007/bf01414629
    [57]
    J.-L. Feugeas , P. Nicolaï , X. Ribeyre , G. Schurtz , V. Tikhonchuk , and M. Grech , “Modeling of two-dimensional effects in hot spot relaxation in laser-produced plasmas,” Phys. Plasmas 15, 062701 (2008).10.1063/1.2919791
    [58]
    K. Otani , K. Shigemori , T. Sakaiya , S. Fujioka , A. Sunahara , M. Nakai , H. Shiraga , H. Azechi , and K. Mima , “Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation,” Phys. Plasmas 14, 122702 (2007).10.1063/1.2817092
    [59]
    M. J.-E. Manuel , C. K. Li , F. H. Séguin , J. Frenje , D. T. Casey , R. D. Petrasso , S. X. Hu , R. Betti , J. D. Hager , D. D. Meyerhofer , and V. A. Smalyuk , “First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 108, 255006 (2012).10.1103/physrevlett.108.255006
    [60]
    B. Srinivasan , G. Dimonte , and X.-Z. Tang , “Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002
    [61]
    G. Schurtz , S. Gary , S. Hulin , C. Chenais-Popovics , J. C. Gauthier , F. Thais , J. Breil , F. Durut , J. L. Feugeas , P. H. Maire , P. Nicolaï , O. Peyrusse , C. Reverdin , G. Soullié , V. Tikhonchuk , B. Villette , and C. Fourment , “Revisiting nonlocal electron-energy transport in inertial-fusion conditions,” Phys. Rev. Lett. 98, 095002 (2007).10.1103/PhysRevLett.98.095002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (184) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return