Citation: | Yuan Jianan, Xia Kang, Ding Chi, Wang Xiaomeng, Lu Qing, Sun Jian. High-energy-density metal nitrides with armchair chains[J]. Matter and Radiation at Extremes, 2022, 7(3): 038402. doi: 10.1063/5.0087168 |
[1] |
D. P. Stevenson, “The strengths of chemical bonds,” J. Am. Chem. Soc. 77, 2350 (1955).10.1021/ja01613a116
|
[2] |
M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
|
[3] |
B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735–741 (2017).10.1021/acs.chemmater.6b04538
|
[4] |
M. Miao, Y. Sun, E. Zurek, and H. Lin, “Chemistry under high pressure,” Nat. Rev. Chem. 4, 508–527 (2020).10.1038/s41570-020-0213-0
|
[5] |
C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B 46, 14419–14435 (1992).10.1103/physrevb.46.14419
|
[6] |
A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, and K. O. Christe, “Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+,” J. Am. Chem. Soc. 123, 6308–6313 (2001).10.1021/ja010141g
|
[7] |
D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
|
[8] |
Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, “Route to high-energy density polymeric nitrogen t-N via He–N compounds,” Nat. Commun. 9, 722 (2018).10.1038/s41467-018-03200-4
|
[9] |
N. P. Salke, K. Xia, S. Fu, Y. Zhang, E. Greenberg, V. B. Prakapenka, J. Liu, J. Sun, and J. F. Lin, “Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure,” Phys. Rev. Lett. 126, 065702 (2021).10.1103/PhysRevLett.126.065702
|
[10] |
D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502
|
[11] |
D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/PhysRevLett.122.066001
|
[12] |
D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
|
[13] |
C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, Y. Meng, J. S. Smith, V. B. Prakapenka, W. Liu, G. Shen, W. L. Mao, and H. K. Mao, “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
|
[14] |
F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
|
[15] |
S. Zhu, F. Peng, H. Liu, A. Majumdar, T. Gao, and Y. Yao, “Stable calcium nitrides at ambient and high pressures,” Inorg. Chem. 55, 7550–7555 (2016).10.1021/acs.inorgchem.6b00948
|
[16] |
B. A. Steele and I. I. Oleynik, “Sodium pentazolate: A nitrogen rich high energy density material,” Chem. Phys. Lett. 643, 21–26 (2016).10.1016/j.cplett.2015.11.008
|
[17] |
C. Zhang, C. Sun, B. Hu, C. Yu, and M. Lu, “Synthesis and characterization of the pentazolate anion cyclo-N5− in (N5)6(H3O)3(NH4)4Cl,” Science 355, 374–376 (2017).10.1126/science.aah3840
|
[18] |
Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, and M. Lu, “A series of energetic metal pentazolate hydrates,” Nature 549, 78–81 (2017).10.1038/nature23662
|
[19] |
P. Hou, L. Lian, Y. Cai, B. Liu, B. Wang, S. Wei, and D. Li, “Structural phase transition and bonding properties of high-pressure polymeric CaN3,” RSC Adv. 8, 4314–4320 (2018).10.1039/c7ra11260b
|
[20] |
B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623–7636 (2018).10.1021/acs.chemmater.8b02907
|
[21] |
Z. Liu, D. Li, Y. Liu, T. Cui, F. Tian, and D. Duan, “Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides,” Phys. Chem. Chem. Phys. 21, 12029–12035 (2019).10.1039/c9cp01723b
|
[22] |
K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao, Q. Wu, and J. Sun, “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
|
[23] |
K. Xia, J. Yuan, X. Zheng, C. Liu, H. Gao, Q. Wu, and J. Sun, “Predictions on high-power trivalent metal pentazolate salts,” J. Phys. Chem. Lett. 10, 6166–6173 (2019).10.1021/acs.jpclett.9b02383
|
[24] |
D. Zhang, X. Xu, M. Lu, T. Bi, Y. Tian, S. Zhang, Y. Yan, Y. Du, M. Zhang, and L. Gao, “Predicted crystal structures of titanium nitrides at high pressures,” Comput. Mater. Sci. 180, 109720 (2020).10.1016/j.commatsci.2020.109720
|
[25] |
X. Shi, Z. Yao, and B. Liu, “New high pressure phases of the Zn–N system,” J. Phys. Chem. C 124, 4044–4049 (2020).10.1021/acs.jpcc.0c00513
|
[26] |
B. Wang, R. Larhlimi, H. Valencia, F. Guégan, and G. Frapper, “Prediction of novel tin nitride SnxNy phases under pressure,” J. Phys. Chem. C 124, 8080–8093 (2020).10.1021/acs.jpcc.9b11404
|
[27] |
J. Zhang, C. Niu, H. Zhang, J. Zhao, X. Wang, and Z. Zeng, “Polymerization of nitrogen in nitrogen–fluorine compounds under pressure,” J. Phys. Chem. Lett. 12, 5731–5737 (2021).10.1021/acs.jpclett.1c01181
|
[28] |
J. Yuan, K. Xia, J. Wu, and J. Sun, “High-energy-density pentazolate salts: CaN10 and BaN10,” Sci. China: Phys., Mech. Astron. 64, 218211 (2021).10.1007/s11433-020-1595-2
|
[29] |
S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–mitrogen MgxNy under high pressure,” J. Phys. Chem. C 121, 11037–11046 (2017).10.1021/acs.jpcc.7b00474
|
[30] |
S. Zhang, Z. Zhao, L. Liu, and G. Yang, “Pressure-induced stable BeN4 as a high-energy density material,” J. Power Sources 365, 155–161 (2017).10.1016/j.jpowsour.2017.08.086
|
[31] |
L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, “Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species,” Chem. Mater. 30, 8476–8485 (2018).10.1021/acs.chemmater.8b02972
|
[32] |
X.-H. Shi, B. Liu, Z. Yao, and B.-B. Liu, “Pressure-stabilized new phase of CaN4,” Chin. Phys. Lett. 37, 047101 (2020).10.1088/0256-307x/37/4/047101
|
[33] |
S. Niu, Z. Li, H. Li, X. Shi, Z. Yao, and B. Liu, “New cadmium–nitrogen compounds at high pressures,” Inorg. Chem. 60, 6772–6781 (2021).10.1021/acs.inorgchem.1c00601
|
[34] |
M. Bykov, E. Bykova, G. Aprilis, K. Glazyrin, E. Koemets, I. Chuvashova, I. Kupenko, C. McCammon, M. Mezouar, V. Prakapenka, H. P. Liermann, F. Tasnádi, A. V. Ponomareva, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, “Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains,” Nat. Commun. 9, 2756 (2018).10.1038/s41467-018-05143-2
|
[35] |
D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, “Synthesis of magnesium-nitrogen salts of polynitrogen anions,” Nat. Commun. 10, 4515 (2019).10.1038/s41467-019-12530-w
|
[36] |
M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnádi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, “High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
|
[37] |
M. Bykov, E. Bykova, A. V. Ponomareva, I. A. Abrikosov, S. Chariton, V. B. Prakapenka, M. F. Mahmood, L. Dubrovinsky, and A. F. Goncharov, “Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure,” Angew. Chem., Int. Ed. 60, 9003–9008 (2021).10.1002/anie.202100283
|
[38] |
M. Bykov, E. Bykova, E. Koemets, T. Fedotenko, G. Aprilis, K. Glazyrin, H.-P. Liermann, A. V. Ponomareva, J. Tidholm, F. Tasnádi, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, “High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains,” Angew. Chem., Int. Ed. 57, 9048–9053 (2018).10.1002/anie.201805152
|
[39] |
M. Bykov, S. Chariton, E. Bykova, S. Khandarkhaeva, T. Fedotenko, A. V. Ponomareva, J. Tidholm, F. Tasnádi, I. A. Abrikosov, P. Sedmak, V. Prakapenka, M. Hanfland, H. P. Liermann, M. Mahmood, A. F. Goncharov, N. Dubrovinskaia, and L. Dubrovinsky, “High-pressure synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers,” Angew. Chem., Int. Ed. 59, 10321–10326 (2020).10.1002/anie.202002487
|
[40] |
K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H.-T. Wang, and D. Xing, “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817–824 (2018).10.1016/j.scib.2018.05.027
|
[41] |
H. Gao, J. Wang, Y. Han, and J. Sun, “Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory,” Fundam. Res. 1, 466–471 (2021).10.1016/j.fmre.2021.06.005
|
[42] |
H. Gao, J. Wang, Z. Guo, and J. Sun, “Determining dimensionalities and multiplicities of crystal nets,” npj Comput. Mater. 6, 143 (2020).10.1038/s41524-020-00409-0
|
[43] |
C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H.-T. Wang, and D. Xing, “Multiple superionic states in helium–water compounds,” Nat. Phys. 15, 1065–1070 (2019).10.1038/s41567-019-0568-7
|
[44] |
Q. Gu, D. Xing, and J. Sun, “Superconducting single-layer T-graphene and novel synthesis routes,” Chin. Phys. Lett. 36, 097401 (2019).10.1088/0256-307x/36/9/097401
|
[45] |
C. Liu, H. Gao, A. Hermann, Y. Wang, M. Miao, C. J. Pickard, R. J. Needs, H.-T. Wang, D. Xing, and J. Sun, “Plastic and superionic helium ammonia compounds under high pressure and high temperature,” Phys. Rev. X 10, 021007 (2020).10.1103/physrevx.10.021007
|
[46] |
H. Gao, C. Liu, A. Hermann, R. J. Needs, C. J. Pickard, H.-T. Wang, D. Xing, and J. Sun, “Coexistence of plastic and partially diffusive phases in a helium-methane compound,” Natl. Sci. Rev. 7, 1540–1547 (2020).10.1093/nsr/nwaa064
|
[47] |
C. Liu, J. Shi, H. Gao, J. Wang, Y. Han, X. Lu, H. T. Wang, D. Xing, and J. Sun, “Mixed coordination silica at megabar pressure,” Phys. Rev. Lett. 126, 035701 (2021).10.1103/PhysRevLett.126.035701
|
[48] |
C. Ding, J. Wang, Y. Han, J. Yuan, H. Gao, and J. Sun, “High energy density polymeric nitrogen nanotubes inside carbon nanotubes,” Chin. Phys. Lett. 39, 036101 (2022).10.1088/0256-307x/39/3/036101
|
[49] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
|
[50] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
|
[51] |
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).10.1103/physrevlett.100.136406
|
[52] |
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
|
[53] |
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344
|
[54] |
S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the damping function in dispersion corrected density functional theory,” J. Comput. Chem. 32, 1456–1465 (2011).10.1002/jcc.21759
|
[55] |
A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater. 108, 1–5 (2015).10.1016/j.scriptamat.2015.07.021
|
[56] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids,” J. Comput. Chem. 34, 2557–2567 (2013).10.1002/jcc.23424
|
[57] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
|
[58] |
A. Otero-de-la-Roza, M. A. Blanco, A. M. Pendás, and V. Luaña, “Critic: A new program for the topological analysis of solid-state electron densities,” Comput. Phys. Commun. 180, 157–166 (2009).10.1016/j.cpc.2008.07.018
|
[59] |
A. Otero-de-la-Roza, E. R. Johnson, and V. Luaña, “Critic2: A program for real-space analysis of quantum chemical interactions in solids,” Comput. Phys. Commun. 185, 1007–1018 (2014).10.1016/j.cpc.2013.10.026
|
[60] |
K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).10.1107/s0021889811038970
|
[61] |
Y. Jean, F. Volatron, and J. K. Burdett, An Introduction to Molecular Orbitals (Oxford University Press, New York, 1993).
|
[62] |
S. Limpijumnong and W. R. L. Lambrecht, “Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN,” Phys. Rev. Lett. 86, 91–94 (2001).10.1103/physrevlett.86.91
|
[63] |
S. Zerroug, F. Ali Sahraoui, and N. Bouarissa, “Ab initio calculations of yttrium nitride: Structural and electronic properties,” Appl. Phys. A 97, 345–350 (2009).10.1007/s00339-009-5243-x
|
[64] |
Z. Liu, D. Li, S. Wei, W. Wang, F. Tian, K. Bao, D. Duan, H. Yu, B. Liu, and T. Cui, “Bonding properties of aluminum nitride at high pressure,” Inorg. Chem. 56, 7494–7500 (2017).10.1021/acs.inorgchem.7b00980
|
[65] |
C. J. Pickard and R. J. Needs, “High-pressure phases of nitrogen,” Phys. Rev. Lett. 102, 125702 (2009).10.1103/physrevlett.102.125702
|
[66] |
R. Y. Rohling, I. C. Tranca, E. J. M. Hensen, and E. A. Pidko, “Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis,” J. Phys. Chem. C 123, 2843–2854 (2019).10.1021/acs.jpcc.8b08934
|
[67] |
E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, “Revealing noncovalent interactions,” J. Am. Chem. Soc. 132, 6498–6506 (2010).10.1021/ja100936w
|
[68] |
W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graphics 14, 33–38 (1996).10.1016/0263-7855(96)00018-5
|
[69] |
M. J. Kamlet and S. J. Jacobs, “Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives,” J. Chem. Phys. 48, 23–35 (1968).10.1063/1.1667908
|
[70] |
J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
|
![]() |
![]() |