Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Zhao Hanzhi, Sheng Zhengming, Weng Suming. Nonlocal thermal transport in magnetized plasma along different directions[J]. Matter and Radiation at Extremes, 2022, 7(4): 045901. doi: 10.1063/5.0086783
Citation: Zhao Hanzhi, Sheng Zhengming, Weng Suming. Nonlocal thermal transport in magnetized plasma along different directions[J]. Matter and Radiation at Extremes, 2022, 7(4): 045901. doi: 10.1063/5.0086783

Nonlocal thermal transport in magnetized plasma along different directions

doi: 10.1063/5.0086783
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wengsuming@sjtu.edu.cn
  • Received Date: 2022-01-28
  • Accepted Date: 2022-05-15
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • Nonlocal thermal transport in magnetized plasmas is studied theoretically and numerically with the Vlasov–Fokker–Planck (VFP) model, in which the magnetic field has nonzero components both perpendicular to and along the temperature gradient. Nonlocal heat transport is found in both the longitudinal and transverse directions, provided the temperature gradients are sufficiently large. The magnetic field tends to reduce the nonlocality of the thermal transport in the direction perpendicular to the magnetic field, i.e., the difference between the heat fluxes predicted by the Braginskii theory and the VFP simulation decreases with increasing magnetic field strength. When the initial temperature gradient is steep, the nonlocal heat flux depends not only on the present temperature profile, but also on its time history. Moreover, the contribution of high-order terms in the spherical harmonic expansion of the electron distribution function becomes important for a magnetized plasma, in particular for thermal transport in the direction perpendicular to the temperature gradient.
  • loading
  • [1]
    L. Spitzer, Jr. and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).10.1103/physrev.89.977
    [2]
    A. R. Bell, R. G. Evans, and D. J. Nicholas, “Electron energy transport in steep temperature gradients in laser-produced plasmas,” Phys. Rev. Lett. 46, 243 (1981).10.1103/physrevlett.46.243
    [3]
    D. R. Gray, J. D. Kilkenny, M. S. White, P. Blyth, and D. Hull, “Observation of severe heat-flux limitation and ion-acoustic turbulence in a laser-heated plasma,” Phys. Rev. Lett. 39, 1270 (1977).10.1103/physrevlett.39.1270
    [4]
    E. M. Epperlein, G. J. Rickard, and A. R. Bell, “Two-dimensional nonlocal electron transport in laser-produced plasmas,” Phys. Rev. Lett. 61, 2453 (1988).10.1103/physrevlett.61.2453
    [5]
    M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan, R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter et al., “The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums,” High Energy Density Phys. 7, 180–190 (2011).10.1016/j.hedp.2011.03.008
    [6]
    D. Cao, G. Moses, and J. Delettrez, “Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations,” Phys. Plasmas 22, 082308 (2015).10.1063/1.4928445
    [7]
    E. M. Epperlein and R. W. Short, “A practical nonlocal model for electron heat transport in laser plasmas,” Phys. Fluids B 3, 3092–3098 (1991).10.1063/1.859789
    [8]
    G. P. Schurtz, P. D. Nicolaï, and M. Busquet, “A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,” Phys. Plasmas 7, 4238–4249 (2000).10.1063/1.1289512
    [9]
    K. Li and W. Y. Huo, “Nonlocal electron heat transport under the non-Maxwellian distribution function,” Phys. Plasmas 27, 062705 (2020).10.1063/5.0002209
    [10]
    T. H. Kho and M. G. Haines, “Nonlinear electron transport in magnetized laser plasmas,” Phys. Fluids 29, 2665–2671 (1986).10.1063/1.865508
    [11]
    J. F. Luciani, P. Mora, and A. Bendib, “Magnetic field and nonlocal transport in laser-created plasmas,” Phys. Rev. Lett. 55, 2421 (1985).10.1103/physrevlett.55.2421
    [12]
    J. F. Luciani, P. Mora, and J. Virmont, “Nonlocal heat transport due to steep temperature gradients,” Phys. Rev. Lett. 51, 1664 (1983).10.1103/physrevlett.51.1664
    [13]
    K. W. Gentle, W. L. Rowan, R. V. Bravenec, G. Cima, T. P. Crowley, H. Gasquet, G. A. Hallock, J. Heard, A. Ouroua, P. E. Phillips et al., “Strong nonlocal effects in a tokamak perturbative transport experiment,” Phys. Rev. Lett. 74, 3620 (1995).10.1103/physrevlett.74.3620
    [14]
    P. Mantica, P. Galli, G. Gorini, G. M. D. Hogeweij, J. De Kloe, N. J. Lopes Cardozo, and RTP Team, “Nonlocal transient transport and thermal barriers in Rijnhuizen Tokamak Project plasmas,” Phys. Rev. Lett. 82, 5048 (1999).10.1103/physrevlett.82.5048
    [15]
    M. R. K. Wigram, C. P. Ridgers, B. D. Dudson, J. P. Brodrick, and J. T. Omotani, “Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling,” Nucl. Fusion 60, 076008 (2020).10.1088/1741-4326/ab868b
    [16]
    J. T. Karpen and C. R. DeVore, “Nonlocal thermal transport in solar flares,” Astrophys. J. 320, 904–912 (1987).10.1086/165608
    [17]
    A. G. Emslie and N. H. Bian, “Reduction of thermal conductive flux by non-local effects in the presence of turbulent scattering,” Astrophys. J. 865, 67 (2018).10.3847/1538-4357/aad961
    [18]
    S. S. A. Silva, J. C. Santos, J. Büchner, and M. V. Alves, “Nonlocal heat flux effects on temperature evolution of the solar atmosphere,” Astron. Astrophys. 615, A32 (2018).10.1051/0004-6361/201730580
    [19]
    J. Hawreliak, D. M. Chambers, S. H. Glenzer, A. Gouveia, R. J. Kingham, R. S. Marjoribanks, P. A. Pinto, O. Renner, P. Soundhauss, S. Topping et al., “Thomson scattering measurements of heat flow in a laser-produced plasma,” J. Phys. B: At., Mol. Opt. Phys. 37, 1541 (2004).10.1088/0953-4075/37/7/013
    [20]
    D. Froula, J. Ross, B. Pollock, P. Davis, A. James, L. Divol, M. Edwards, A. Offenberger, D. Price, R. Town et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
    [21]
    A. R. Bell and M. Tzoufras, “Electron transport and shock ignition,” Plasma Phys. Controlled Fusion 53, 045010 (2011).10.1088/0741-3335/53/4/045010
    [22]
    J. Nikl, M. Holec, M. Zeman, M. Kuchařík, J. Limpouch, and S. Weber, “Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation,” Matter Radiat. Extremes 3, 110–126 (2018).10.1016/j.mre.2018.03.001
    [23]
    W. Huo, Z. Li, D. Yang, K. Lan, J. Liu, G. Ren, S. Li, Z. Yang, L. Guo, L. Hou et al., “First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole,” Matter Radiat. Extremes 1, 2–7 (2016).10.1016/j.mre.2016.02.001
    [24]
    T. Johzaki, M. Hino, M. Horio, S. Takeda, W. Kim, T. Endo, S. Fujioka, Y. Sentoku, H. Nagatomo, and A. Sunahara, “Intensification of laser-produced relativistic electron beam using converging magnetic fields for ignition in fast ignition laser fusion,” High Energy Density Phys. 36, 100841 (2020).10.1016/j.hedp.2020.100841
    [25]
    P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock et al., “Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions,” Phys. Rev. Lett. 97, 255001 (2006).10.1103/physrevlett.97.255001
    [26]
    E. S. Weibel, “Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution,” Phys. Rev. Lett. 2, 83 (1959).10.1103/physrevlett.2.83
    [27]
    S. Mondal, V. Narayanan, W. J. Ding, A. D. Lad, B. Hao, S. Ahmad, W. M. Wang, Z. M. Sheng, S. Sengupta, P. Kaw et al., “Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas,” Proc. Natl. Acad. Sci. U. S. A. 109, 8011–8015 (2012).10.1073/pnas.1200753109
    [28]
    M. R. Gomez, S. A. Slutz, C. A. Jennings, D. J. Ampleford, M. R. Weis, C. E. Myers, D. A. Yager-Elorriaga, K. D. Hahn, S. B. Hansen, E. C. Harding et al., “Performance scaling in magnetized liner inertial fusion experiments,” Phys. Rev. Lett. 125, 155002 (2020).10.1103/physrevlett.125.155002
    [29]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/PhysRevLett.108.025003
    [30]
    W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).10.1103/PhysRevLett.114.015001
    [31]
    S. Braginskii, “Transport processes in a plasma,” Rev. Plasma Phys. 1, 249–251 (1965).
    [32]
    E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029–1041 (1986).10.1063/1.865901
    [33]
    J. D. Sadler, C. A. Walsh, and H. Li, “Symmetric set of transport coefficients for collisional magnetized plasma,” Phys. Rev. Lett. 126, 075001 (2021).10.1103/physrevlett.126.075001
    [34]
    D. Del Sorbo, J.-L. Feugeas, P. Nicolaï, M. Olazabal-Loumé, B. Dubroca, and V. Tikhonchuk, “Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas,” Laser Part. Beams 34, 412–425 (2016).10.1017/s0263034616000252
    [35]
    P. D. Nicolaï, J.-L. A. Feugeas, and G. P. Schurtz, “A practical nonlocal model for heat transport in magnetized laser plasmas,” Phys. Plasmas 13, 032701 (2006).10.1063/1.2179392
    [36]
    A. Nishiguchi, “Nonlocal electron heat transport in magnetized dense plasmas,” Plasma Fusion Res. 9, 1404096 (2014).10.1585/pfr.9.1404096
    [37]
    C. P. Ridgers, R. J. Kingham, and A. G. Thomas, “Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas,” Phys. Rev. Lett. 100, 075003 (2008).10.1103/PhysRevLett.100.075003
    [38]
    T. W. Johnston, “Cartesian tensor scalar product and spherical harmonic expansions in Boltzmann’s equation,” Phys. Rev. 120, 1103 (1960).10.1103/physrev.120.1103
    [39]
    A. R. Bell, A. P. L. Robinson, M. Sherlock, R. J. Kingham, and W. Rozmus, “Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation,” Plasma Phys. Controlled Fusion 48, R37 (2006).10.1088/0741-3335/48/3/r01
    [40]
    M. Tzoufras, A. R. Bell, P. A. Norreys, and F. S. Tsung, “A Vlasov–Fokker–Planck code for high energy density physics,” J. Comput. Phys. 230, 6475–6494 (2011).10.1016/j.jcp.2011.04.034
    [41]
    J. S. Chang and G. Cooper, “A practical difference scheme for Fokker-Planck equations,” J. Comput. Phys. 6, 1–16 (1970).10.1016/0021-9991(70)90001-x
    [42]
    R. J. Kingham and A. R. Bell, “An implicit Vlasov–Fokker–Planck code to model non-local electron transport in 2-D with magnetic fields,” J. Comput. Phys. 194, 1–34 (2004).10.1016/j.jcp.2003.08.017
    [43]
    W. A. Farmer, O. S. Jones, M. A. Barrios, D. J. Strozzi, J. M. Koning, G. D. Kerbel, D. E. Hinkel, J. D. Moody, L. J. Suter, D. A. Liedahl et al., “Heat transport modeling of the dot spectroscopy platform on NIF,” Plasma Phys. Controlled Fusion 60, 044009 (2018).10.1088/1361-6587/aaaefd
    [44]
    R. C. Malone, R. L. McCrory, and R. L. Morse, “Indications of strongly flux-limited electron thermal conduction in laser-target experiments,” Phys. Rev. Lett. 34, 721 (1975).10.1103/physrevlett.34.721
    [45]
    M. A. Barrios, J. D. Moody, L. J. Suter, M. Sherlock, H. Chen, W. Farmer, J. Jaquez, O. Jones, R. L. Kauffman, J. D. Kilkenny et al., “Developing an experimental basis for understanding transport in NIF hohlraum plasmas,” Phys. Rev. Lett. 121, 095002 (2018).10.1103/PhysRevLett.121.095002
    [46]
    S. H. Glenzer, C. A. Back, L. J. Suter, M. A. Blain, O. L. Landen, J. D. Lindl, B. J. MacGowan, G. F. Stone, R. E. Turner, and B. H. Wilde, “Thomson scattering from inertial-confinement-fusion hohlraum plasmas,” Phys. Rev. Lett. 79, 1277 (1997).10.1103/physrevlett.79.1277
    [47]
    D. S. Montgomery, B. J. Albright, D. H. Barnak, P. Y. Chang, J. R. Davies, G. Fiksel, D. H. Froula, J. L. Kline, M. J. MacDonald, A. B. Sefkow et al., “Use of external magnetic fields in hohlraum plasmas to improve laser-coupling,” Phys. Plasmas 22, 010703 (2015).10.1063/1.4906055
    [48]
    C. Plechaty, R. Presura, and A. A. Esaulov, “Focusing of an explosive plasma expansion in a transverse magnetic field,” Phys. Rev. Lett. 111, 185002 (2013).10.1103/physrevlett.111.185002
    [49]
    L. S. Leal, A. V. Maximov, R. Betti, A. B. Sefkow, and V. V. Ivanov, “Modeling magnetic confinement of laser-generated plasma in cylindrical geometry leading to disk-shaped structures,” Phys. Plasmas 27, 022116 (2020).10.1063/1.5139888
    [50]
    E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, G. Revet, J. Béard, S. Bolaños, S. N. Chen, A. Guediche, J. Hare et al., “Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field,” Sci. Rep. 11, 8180 (2021).10.1038/s41598-021-87651-8
    [51]
    S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).10.1103/PhysRevE.69.026413
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (108) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return