Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Gao Jingli, Ye Difa, Liu Jie, Kang Wei. Transition of the generation mechanism of high-order harmonics in an extended neon system[J]. Matter and Radiation at Extremes, 2022, 7(4): 044403. doi: 10.1063/5.0085861
Citation: Gao Jingli, Ye Difa, Liu Jie, Kang Wei. Transition of the generation mechanism of high-order harmonics in an extended neon system[J]. Matter and Radiation at Extremes, 2022, 7(4): 044403. doi: 10.1063/5.0085861

Transition of the generation mechanism of high-order harmonics in an extended neon system

doi: 10.1063/5.0085861
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: weikang@pku.edu.cn
  • Received Date: 2022-01-19
  • Accepted Date: 2022-06-16
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • Using a time-dependent density functional theory method, we perform a systematic numerical study of the transition of high-order harmonic generation in neon (Ne) systems from an isolated Ne atom to an extended Ne system of solid density. We show that ionized electrons wander in such extended systems until they meet a nearby ion and collide with it. The maximum energy edge for the main feature of the high-order harmonic spectrum in this “wandering electron” picture is determined as Eedge = Ip + 8Up, where Ip is the ionization energy of Ne and Up is the ponderomotive energy delivered by the driving laser. The factor of 8 comes from the maximum kinetic energy of an ionized electron in the driving laser field. Beyond the atomic limit of high-order harmonic spectra, a multiplatform feature is observed, corresponding to re-collisions of ionized electrons with their nearby ions. It is also shown that a Ne simple cubic lattice of appropriate size provides a selection condition for the direction of polarization of high-order harmonics beyond the atomic limit, which may be further used to manipulate the emitted radiation.
  • loading
  • [1]
    F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).10.1103/revmodphys.81.163
    [2]
    M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).10.1038/35107000
    [3]
    P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).10.1038/nphys620
    [4]
    A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987).10.1364/josab.4.000595
    [5]
    P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).10.1126/science.1059413
    [6]
    I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime,” Phys. Rev. Lett. 78, 1251–1254 (1997).10.1103/physrevlett.78.1251
    [7]
    P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994).10.1364/ol.19.001870
    [8]
    R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).10.1126/science.1071718
    [9]
    M. Chini, K. Zhao, and Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8, 178–186 (2014).10.1038/nphoton.2013.362
    [10]
    S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter, E. Magerl, E. M. Bothschafter, M. Jobst, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, J. Burgdörfer, P. Feulner, F. Krausz, and R. Kienberger, “Direct observation of electron propagation and dielectric screening on the atomic length scale,” Nature 517, 342–346 (2015).10.1038/nature14094
    [11]
    T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, and G. Andriukaitis, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).10.1126/science.1218497
    [12]
    M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).10.1103/physrevlett.105.173901
    [13]
    H. Lakhotia, H. Y. Kim, M. Zhan, S. Hu, S. Meng, and E. Goulielmakis, “Laser picoscopy of valence electrons in solids,” Nature 583, 55–59 (2020).10.1038/s41586-020-2429-z
    [14]
    H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466, 604–607 (2010).10.1038/nature09185
    [15]
    M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martín, “Attosecond electron dynamics in molecules,” Chem. Rev. 117, 10760–10825 (2017).10.1021/acs.chemrev.6b00453
    [16]
    E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett. 82, 1668–1671 (1999).10.1103/physrevlett.82.1668
    [17]
    K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993).10.1103/physrevlett.70.1599
    [18]
    M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).10.1103/physreva.49.2117
    [19]
    P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).10.1103/physrevlett.71.1994
    [20]
    S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7, 138–141 (2011).10.1038/nphys1847
    [21]
    S. Ghimire and D. A. Reis, “High-harmonic generation from solids,” Nat. Phys. 15, 10–16 (2019).10.1038/s41567-018-0315-5
    [22]
    J. D. Cox, A. Marini, and F. J. G. de Abajo, “Plasmon-assisted high-harmonic generation in graphene,” Nat. Commun. 8, 14380 (2017).10.1038/ncomms14380
    [23]
    D. Franz, S. Kaassamani, D. Gauthier, R. Nicolas, M. Kholodtsova, L. Douillard, J.-T. Gomes, L. Lavoute, D. Gaponov, and N. Ducros, “All semiconductor enhanced high-harmonic generation from a single nanostructured cone,” Sci. Rep. 9, 5663 (2019).10.1038/s41598-019-41642-y
    [24]
    M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357, 303–306 (2017).10.1126/science.aan2395
    [25]
    A. J. Uzan, G. Orenstein, Á. Jiménez-Galán, C. McDonald, R. E. F. Silva, B. D. Bruner, N. D. Klimkin, V. Blanchet, and T. Arusi-Parpar, “Attosecond spectral singularities in solid-state high-harmonic generation,” Nat. Photonics 14, 183–187 (2020).10.1038/s41566-019-0574-4
    [26]
    T. Higuchi, M. I. Stockman, and P. Hommelhoff, “Strong-field perspective on high-harmonic radiation from bulk solids,” Phys. Rev. Lett. 113, 213901 (2014).10.1103/physrevlett.113.213901
    [27]
    E. N. Osika, A. Chacón, L. Ortmann, N. Suárez, J. A. Pérez-Hernández, B. Szafran, M. F. Ciappina, F. Sols, A. S. Landsman, and M. Lewenstein, “Wannier-Bloch approach to localization in high-harmonics generation in solids,” Phys. Rev. X 7, 021017 (2017).10.1103/physrevx.7.021017
    [28]
    M. Wu, D. A. Browne, K. J. Schafer, and M. B. Gaarde, “Multilevel perspective on high-order harmonic generation in solids,” Phys. Rev. A 94, 063403 (2016).10.1103/physreva.94.063403
    [29]
    A. M. Parks, G. Ernotte, A. Thorpe, C. R. McDonald, P. B. Corkum, M. Taucer, and T. Brabec, “Wannier quasi-classical approach to high harmonic generation in semiconductors,” Optica 7, 1764–1772 (2020).10.1364/optica.402393
    [30]
    O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8, 119–123 (2014).10.1038/nphoton.2013.349
    [31]
    T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, “Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).10.1038/nature14456
    [32]
    N. Tancogne-Dejean, O. D. Mücke, F. X. Kärtner, and A. Rubio, “Impact of the electronic band structure in high-harmonic generation spectra of solids,” Phys. Rev. Lett. 118, 087403 (2017).10.1103/PhysRevLett.118.087403
    [33]
    G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, “Theoretical analysis of high-harmonic generation in solids,” Phys. Rev. Lett. 113, 073901 (2014).10.1103/PhysRevLett.113.073901
    [34]
    D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter and intraband excitations,” Phys. Rev. B 77, 075330 (2008).10.1103/physrevb.77.075330
    [35]
    G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and D. A. Reis, “Solid-state harmonics beyond the atomic limit,” Nature 534, 520–523 (2016).10.1038/nature17660
    [36]
    G. Vampa, C. R. McDonald, G. Orlando, P. B. Corkum, and T. Brabec, “Semiclassical analysis of high harmonic generation in bulk crystals,” Phys. Rev. B 91, 064302 (2015).10.1103/physrevb.91.064302
    [37]
    L. Plaja and L. Roso-Franco, “High-order harmonic generation in a crystalline solid,” Phys. Rev. B 45, 8334–8341 (1992).10.1103/physrevb.45.8334
    [38]
    M. Wu, S. Ghimire, D. A. Reis, K. J. Schafer, and M. B. Gaarde, “High-harmonic generation from Bloch electrons in solids,” Phys. Rev. A 91, 043839 (2015).10.1103/physreva.91.043839
    [39]
    E. Runge and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Phys. Rev. Lett. 52, 997–1000 (1984).10.1103/physrevlett.52.997
    [40]
    E. K. U. Gross and W. Kohn, “Time-dependent density-functional theory,” Adv. Quantum Chem. 21, 255–291 (1990).10.1016/s0065-3276(08)60600-0
    [41]
    M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55, 427–455 (2004).10.1146/annurev.physchem.55.091602.094449
    [42]
    Z. Nourbakhsh, N. Tancogne-Dejean, H. Merdji, and A. Rubio, “High harmonics and isolated attosecond pulses from MgO,” Phys. Rev. Appl. 15, 014013 (2021).10.1103/physrevapplied.15.014013
    [43]
    G. Wachter, C. Lemell, J. Burgdörfer, S. A. Sato, X. M. Tong, and K. Yabana, “Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials,” Phys. Rev. Lett. 113, 087401 (2014).10.1103/PhysRevLett.113.087401
    [44]
    D. Bauer and K. K. Hansen, “High-harmonic generation in solids with and without topological edge states,” Phys. Rev. Lett. 120, 177401 (2018).10.1103/physrevlett.120.177401
    [45]
    N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, “Ultrafast modification of Hubbard U in a strongly correlated material: Ab initio high-harmonic generation in NiO,” Phys. Rev. Lett. 121, 097402 (2018).10.1103/PhysRevLett.121.097402
    [46]
    I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato, X.-M. Tong, K. Yabana, and J. Burgdörfer, “Ab initio multiscale simulation of high-order harmonic generation in solids,” Phys. Rev. A 97, 011401 (2018).10.1103/physreva.97.011401
    [47]
    F. Dong, Q. Xia, and J. Liu, “Ellipticity of the harmonic emission from graphene irradiated by a linearly polarized laser,” Phys. Rev. A 104, 033119 (2021).10.1103/physreva.104.033119
    [48]
    M. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “Octopus: A first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151, 60–78 (2003).10.1016/s0010-4655(02)00686-0
    [49]
    A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Marques, E. K. U. Gross, and A. Rubio, “Octopus: A tool for the application of time-dependent density functional theory,” Phys. Status Solidi B 243, 2465–2488 (2006).10.1002/pssb.200642067
    [50]
    X. Andrade, D. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. J. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Rubio, “Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems,” Phys. Chem. Chem. Phys. 17, 31371–31396 (2015).10.1039/c5cp00351b
    [51]
    N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca, G. Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. De Giovannini, A. Delgado, F. G. Eich, J. Flick, and G. Gil, “Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems,” J. Chem. Phys. 152, 124119 (2020).10.1063/1.5142502
    [52]
    J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett. 68, 3535–3538 (1992).10.1103/physrevlett.68.3535
    [53]
    R. van Leeuwen, “Mapping from densities to potentials in time-dependent density-functional theory,” Phys. Rev. Lett. 82, 3863–3866 (1999).10.1103/physrevlett.82.3863
    [54]
    M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).10.1038/415039a
    [55]
    U. De Giovannini, A. H. Larsen, and A. Rubio, “Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries,” Eur. Phys. J. B 88, 56 (2015).10.1140/epjb/e2015-50808-0
    [56]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
    [57]
    J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).10.1103/physrevb.23.5048
    [58]
    N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B 43, 1993–2006 (1991).10.1103/physrevb.43.1993
    [59]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).10.1103/physrev.136.b864
    [60]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).10.1103/physrev.140.a1133
    [61]
    K. K. Hansen, D. Bauer, and L. B. Madsen, “Finite-system effects on high-order harmonic generation: From atoms to solids,” Phys. Rev. A 97, 043424 (2018).10.1103/physreva.97.043424
    [62]
    T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, “Coherent electric-field effects in semiconductors,” Phys. Rev. Lett. 73, 902–905 (1994).10.1103/physrevlett.73.902
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (229) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return