Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Lin Jiani, Wang Fangxu, Rui Qi, Li Jianfu, Wang Qinglin, Wang Xiaoli. A novel square planar N42− ring with aromaticity in BeN4[J]. Matter and Radiation at Extremes, 2022, 7(3): 038401. doi: 10.1063/5.0084802
Citation: Lin Jiani, Wang Fangxu, Rui Qi, Li Jianfu, Wang Qinglin, Wang Xiaoli. A novel square planar N42− ring with aromaticity in BeN4[J]. Matter and Radiation at Extremes, 2022, 7(3): 038401. doi: 10.1063/5.0084802

A novel square planar N42− ring with aromaticity in BeN4

doi: 10.1063/5.0084802
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: jianfuli@ytu.edu.cn and xlwang@ytu.edu.cn; a)Authors to whom correspondence should be addressed: jianfuli@ytu.edu.cn and xlwang@ytu.edu.cn
  • Received Date: 2022-01-10
  • Accepted Date: 2022-03-13
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • A structural search leads to the prediction of a novel alkaline earth nitride BeN4 containing a square planar N42− ring. This compound has a particular chemical bonding pattern giving it potential as a high-energy-density material. The P4/nmm phase of BeN4 may be stable under ambient conditions, with a bandgap of 3.72 eV. It is predicted to have high thermodynamic and kinetic stability due to transfer of the outer-shell s electrons of the Be atom to the N4 cluster, with the outer-shell 2p orbital accommodating the lone-pair electrons of N42−. The total of six π electrons is the most striking feature, indicating that the square planar N42− exhibits aromaticity. Under ambient conditions, BeN4 has a high energy density (3.924 kJ/g relative to Be3N2 and N2 gas), and its synthesis might be possible at pressures above 31.6 GPa.
  • loading
  • [1]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, R. Boehler, and R. Academy, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
    [2]
    D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/PhysRevLett.113.205502
    [3]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/physrevlett.122.066001
    [4]
    C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, Y. Meng, J. S. Smith, V. B. Prakapenka, W. Liu, G. Shen, W. L. Mao, and H. K. Mao, “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
    [5]
    Q. Wei, C. Zhao, M. Zhang, H. Yan, B. Wei, and X. Peng, “New stable structures of HeN3 predicted using first-principles calculations,” J. Alloys Compd. 800, 505–511 (2019).10.1016/j.jallcom.2019.06.035
    [6]
    Z. Liu, D. Li, S. Wei, W. Wang, F. Tian, K. Bao, D. Duan, H. Yu, B. Liu, and T. Cui, “Bonding properties of aluminum nitride at high pressure,” Inorg. Chem. 56, 7494–7500 (2017).10.1021/acs.inorgchem.7b00980
    [7]
    Z. Liu, D. Li, S. Wei, Y. Liu, F. Tian, D. Duan, and T. Cui, “Nitrogen-rich GaN5 and GaN6 as high energy density materials with modest synthesis condition,” Phys. Lett. A 383, 125859 (2019).10.1016/j.physleta.2019.125859
    [8]
    B. A. Steele and I. I. Oleynik, “Novel potassium polynitrides at high pressures,” J. Phys. Chem. A 121, 8955–8961 (2017).10.1021/acs.jpca.7b08974
    [9]
    M. Zhang, H. Yan, Q. Wei, and H. Liu, “A new high-pressure polymeric nitrogen phase in potassium azide,” RSC Adv. 5, 11825–11830 (2015).10.1039/c4ra15699d
    [10]
    Y. Shen, A. R. Oganov, G. Qian, J. Zhang, H. Dong, Q. Zhu, and Z. Zhou, “Novel lithium-nitrogen compounds at ambient and high pressures,” Sci. Rep. 5, 14204 (2015).10.1038/srep14204
    [11]
    P. Hou, L. Lian, Y. Cai, B. Liu, B. Wang, S. Wei, and D. Li, “Structural phase transition and bonding properties of high-pressure polymeric CaN3,” RSC Adv. 8, 4314–4320 (2018).10.1039/c7ra11260b
    [12]
    A. S. Williams, B. A. Steele, and I. I. Oleynik, “Novel rubidium poly-nitrogen materials at high pressure,” J. Chem. Phys. 147, 234701 (2017).10.1063/1.5004416
    [13]
    S. Wei, D. Li, Z. Liu, X. Li, F. Tian, D. Duan, B. Liu, and T. Cui, “Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials,” Phys. Chem. Chem. Phys. 19, 9246–9252 (2017).10.1039/c6cp08771j
    [14]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [15]
    W. Wang, H. Wang, Y. Liu, D. Li, F. Tian, D. Duan, H. Yu, and T. Cui, “High-pressure bonding mechanism of selenium nitrides,” Inorg. Chem. 58, 2397–2402 (2019).10.1021/acs.inorgchem.8b02889
    [16]
    F. Peng, Y. Wang, H. Wang, Y. Zhang, and Y. Ma, “Stable xenon nitride at high pressures,” Phys. Rev. B 92, 094104 (2015).10.1103/physrevb.92.094104
    [17]
    B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623–7636 (2018).10.1021/acs.chemmater.8b02907
    [18]
    J. Lin, Z. Zhu, Q. Jiang, S. Guo, J. Li, H. Zhu, and X. Wang, “Stable zigzag and tripodal all-nitrogen anion N44− in BeN2,” AIP Adv. 9, 055116 (2019).10.1063/1.5098867
    [19]
    F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
    [20]
    L. C. Perera, O. Raymond, W. Henderson, P. J. Brothers, and P. G. Plieger, “Advances in beryllium coordination chemistry,” Coord. Chem. Rev. 352, 264–290 (2017).10.1016/j.ccr.2017.09.009
    [21]
    S. B. Schneider, M. Mangstl, G. M. Friederichs, R. Frankovsky, J. Schmedt auf der Günne, and W. Schnick, “Electronic and ionic conductivity in alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) and in Li2N2,” Chem. Mater. 25, 4149–4155 (2013).10.1021/cm4011629
    [22]
    S. B. Schneider, R. Frankovsky, and W. Schnick, “Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure,” Inorg. Chem. 51, 2366–2373 (2012).10.1021/ic2023677
    [23]
    S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen MgxNy phases under high pressure,” J. Phys. Chem. C 121, 11037–11046 (2017).10.1021/acs.jpcc.7b00474
    [24]
    F. Peng, Y. Han, H. Liu, and Y. Yao, “Exotic stable cesium polynitrides at high pressure,” Sci. Rep. 5, 16902 (2015).10.1038/srep16902
    [25]
    X. Wang, J. Li, N. Xu, H. Zhu, Z. Hu, and L. Chen, “Layered polymeric nitrogen in RbN3 at high pressures,” Sci. Rep. 5, 16677 (2015).10.1038/srep16677
    [26]
    X. Wang, J. Li, H. Zhu, L. Chen, and H. Lin, “Polymerization of nitrogen in cesium azide under modest pressure,” J. Chem. Phys. 141, 044717 (2014).10.1063/1.4891367
    [27]
    X. Wang, J. Li, J. Botana, M. Zhang, H. Zhu, L. Chen, H. Liu, T. Cui, and M. Miao, “Polymerization of nitrogen in lithium azide,” J. Chem. Phys. 139, 164710 (2013).10.1063/1.4826636
    [28]
    Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, “Route to high-energy density polymeric nitrogen t-N via He–N compounds,” Nat. Commun. 9, 722 (2018).10.1038/s41467-018-03200-4
    [29]
    S. Zhang, Z. Zhao, L. Liu, and G. Yang, “Pressure-induced stable BeN4 as a high-energy density material,” J. Power Sources 365, 155–161 (2017).10.1016/j.jpowsour.2017.08.086
    [30]
    S. Zhu, F. Peng, H. Liu, A. Majumdar, T. Gao, and Y. Yao, “Stable calcium nitrides at ambient and high pressures,” Inorg. Chem. 55, 7550–7555 (2016).10.1021/acs.inorgchem.6b00948
    [31]
    J. Lin, D. Peng, Q. Wang, J. Li, H. Zhu, and X. Wang, “Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions,” Phys. Chem. Chem. Phys. 23, 6863–6870 (2021).10.1039/d0cp05402j
    [32]
    M. A. Aslam and Z. J. Ding, “Prediction of thermodynamically stable compounds of the Sc–N system under high pressure,” ACS Omega 3, 11477–11485 (2018).10.1021/acsomega.8b01602
    [33]
    L.-P. Ding, P. Shao, F.-H. Zhang, C. Lu, and X.-F. Huang, “Prediction of molybdenum nitride from first-principle calculations: Crystal structures, electronic properties, and hardness,” J. Phys. Chem. C 122, 21039–21046 (2018).10.1021/acs.jpcc.8b04779
    [34]
    Y.-R. Zhao, G.-T. Zhang, H.-Y. Yan, T.-T. Bai, B.-B. Zheng, and Y.-Q. Yuan, “First-principles investigations of the structure and physical properties for new TcN crystal structure,” Mol. Phys. 114, 1952–1959 (2016).10.1080/00268976.2016.1171407
    [35]
    Q. Wei, C. Zhao, M. Zhang, H. Yan, and B. Wei, “High-pressure phases and pressure-induced phase transition of MoN6 and ReN6,” Phys. Lett. A 383, 2429–2435 (2019).10.1016/j.physleta.2019.04.061
    [36]
    Y. Chen, X. Cai, H. Wang, H. Wang, and H. Wang, “Novel triadius-like N4 specie of iron nitride compounds under high pressure,” Sci. Rep. 8, 10670 (2018).10.1038/s41598-018-29038-w
    [37]
    L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, “Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species,” Chem. Mater. 30, 8476–8485 (2018).10.1021/acs.chemmater.8b02972
    [38]
    K. Niwa, K. Suzuki, S. Muto, K. Tatsumi, K. Soda, T. Kikegawa, and M. Hasegawa, “Discovery of the last remaining binary platinum-group pernitride RuN2,” Chem. - Eur. J. 20, 13885–13888 (2014).10.1002/chem.201404165
    [39]
    A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao, “Synthesis of novel transition metal nitrides IrN2 and OsN2,” Phys. Rev. Lett. 96, 155501 (2006).10.1103/PhysRevLett.96.155501
    [40]
    K. Niwa, D. Dzivenko, K. Suzuki, R. Riedel, I. Troyan, M. Eremets, and M. Hasegawa, “High pressure synthesis of marcasite-type rhodium pernitride,” Inorg. Chem. 53, 697–699 (2014).10.1021/ic402885k
    [41]
    J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, “Synthesis and characterization of the nitrides of platinum and iridium,” Science 311, 1275–1278 (2006).10.1126/science.1121813
    [42]
    J. Li, L. Sun, X. Wang, H. Zhu, and M. Miao, “Simple route to metal cyclo-N5− salt: High-pressure synthesis of CuN5,” J. Phys. Chem. C 122, 22339–22344 (2018).10.1021/acs.jpcc.8b08924
    [43]
    C. L. Schmidt, R. Dinnebier, U. Wedig, and M. Jansen, “Crystal structure and chemical bonding of the high-temperature phase of AgN3,” Inorg. Chem. 46, 907–916 (2007).10.1021/ic061963n
    [44]
    S. Krishnamurthy, M. Montalti, M. G. Wardle, M. J. Shaw, P. R. Briddon, K. Svensson, M. R. C. Hunt, and L. Šiller, “Nitrogen ion irradiation of Au(110): Photoemission spectroscopy and possible crystal structures of gold nitride,” Phys. Rev. B 70, 045414 (2004).10.1103/physrevb.70.045414
    [45]
    J. H. Tian, T. Song, X. W. Sun, T. Wang, and G. Jiang, “Theoretical investigation on the high-pressure physical properties of ZnN in cubic zinc blende, rock salt, and cesium chloride structures,” J. Phys. Chem. Solids 110, 70–75 (2017).10.1016/j.jpcs.2017.05.028
    [46]
    S. Guo, J. Lin, J. Li, Q. Wang, H. Wu, H. Zhu, and X. Wang, “High-pressure stable phases in mercury azide,” Comput. Mater. Sci. 169, 109147 (2019).10.1016/j.commatsci.2019.109147
    [47]
    B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735–741 (2017).10.1021/acs.chemmater.6b04538
    [48]
    D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
    [49]
    M. Bykov, E. Bykova, G. Aprilis, K. Glazyrin, E. Koemets, I. Chuvashova, I. Kupenko, C. McCammon, M. Mezouar, V. Prakapenka, H. P. Liermann, F. Tasnádi, A. V. Ponomareva, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, “Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains,” Nat. Commun. 9, 2756 (2018).10.1038/s41467-018-05143-2
    [50]
    J. Binns, M.-E. Donnelly, M. Peña-Alvarez, M. Wang, E. Gregoryanz, A. Hermann, P. Dalladay-Simpson, and R. T. Howie, “Direct reaction between copper and nitrogen at high pressures and temperatures,” J. Phys. Chem. Lett. 10, 1109–1114 (2019).10.1021/acs.jpclett.9b00070
    [51]
    M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnádi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, “High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
    [52]
    S. Wei, D. Li, Z. Liu, W. Wang, F. Tian, K. Bao, D. Duan, B. Liu, and T. Cui, “A novel polymerization of nitrogen in beryllium tetranitride at high pressure,” J. Phys. Chem. C 121, 9766–9772 (2017).10.1021/acs.jpcc.7b02592
    [53]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
    [54]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [55]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [56]
    J. D. Pack and H. J. Monkhorst, “‘Special points for Brillouin-zone integrations’—A reply,” Phys. Rev. B 16, 1748–1749 (1977).10.1103/physrevb.16.1748
    [57]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [58]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/PhysRevB.50.17953
    [59]
    K. Parlinski, Z. Q. Li, and Y. Kawazoe, “First-principles determination of the soft mode in cubic ZrO2,” Phys. Rev. Lett. 78, 4063–4066 (1997).10.1103/physrevlett.78.4063
    [60]
    A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
    [61]
    S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).10.1063/1.447334
    [62]
    W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).10.1103/physreva.31.1695
    [63]
    R. Hill, “Related content the elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., London, Sect. A 65, 349–354 (1952).10.1088/0370-1298/65/5/307
    [64]
    Q. Zhang and Y. Chang, “Prediction of detonation pressure and velocity of explosives with micrometer aluminum powders,” Cent. Eur. J. Energ. Mater. 9, 77–86 (2012).
    [65]
    M. J. Kamlet and J. E. Ablard, “Chemistry of detonations. II. Buffered equilibria,” J. Chem. Phys. 48, 36–42 (1968).10.1063/1.1667930
    [66]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
    [67]
    W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21, 084204 (2009).10.1088/0953-8984/21/8/084204
    [68]
    T. R. Galeev, B. D. Dunnington, J. R. Schmidt, and A. I. Boldyrev, “Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems,” Phys. Chem. Chem. Phys. 15, 5022 (2013).10.1039/c3cp50350j
    [69]
    G. A. Olah, G. K. Surya Prakash, and G. Rasul, “N62+ and N42+ dications and their N12 and N10 azido derivatives: DFT/GIAO-MP2 theoretical studies,” J. Am. Chem. Soc. 123, 3308–3310 (2001).10.1021/ja002253y
    [70]
    Q. S. Li and L. P. Cheng, “Aromaticity of square planar N42− in the M2N4 (M = Li, Na, K, Rb, or Cs) species,” J. Phys. Chem. A 107, 2882–2889 (2003).10.1021/jp027350n
    [71]
    L. P. Cheng and Q. S. Li, “N4 ring as a square planar ligand in novel MN4 species,” J. Phys. Chem. A 109, 3182–3186 (2005).10.1021/jp045348l
    [72]
    G. van Zandwijk, R. A. J. Janssen, and H. M. Buck, “6π aromaticity in four-membered rings,” J. Am. Chem. Soc. 112, 4155–4164 (1990).10.1021/ja00167a009
    [73]
    L. P. Cheng and Q. S. Li, “Theoretical study of nitrogen-rich BeN4 compounds,” J. Phys. Chem. A 108, 665–670 (2004).10.1021/jp035536w
    [74]
    Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B 76, 054115 (2007).10.1103/physrevb.76.054115
    [75]
    M. Moreno Armenta, A. Reyes-Serrato, and M. Avalos Borja, “Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study,” Phys. Rev. B 62, 4890–4898 (2000).10.1103/physrevb.62.4890
    [76]
    C. J. Pickard and R. J. Needs, “High-pressure phases of nitrogen,” Phys. Rev. Lett. 102, 125702 (2009).10.1103/PhysRevLett.102.125702
    [77]
    M. J. Kamlet and C. Dickinson, “Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43 (1968).10.1063/1.1667939
    [78]
    J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103(R) (2017).10.1103/physrevb.95.020103
    [79]
    J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyritechnics (J. Stierstorfer and T. M. Klapötke, 2010).
    [80]
    G. T. Furukawa and M. L. Reilly, “Heat capacity and thermodynamic properties of α-beryllium nitride, Be3N2, from 20 to 315 K,” J. Res. Natl. Bur. Stand., Sect. A 74A, 617–629 (1970).10.6028/jres.074a.049
    [81]
    T. B. Douglas and W. H. Payne, “Measured enthalpy and derived thermodynamic properties of alpha beryllium nitride, Be3N2, from 273 to 1200 K,” J. Res. Natl. Bur. Stand., Sect. A 73A, 471–477 (1969).10.6028/jres.073a.036
    [82]
    D. Hall, G. E. Gurr, and G. A. Jeffrey, “Zur kenntnis des systems Be3N-Si3N4. V. A refinement of the crystal structure of β-beryllium nitride,” Z. Anorg. Allg. Chem. 369, 108–112 (1969).10.1002/zaac.19693690115
    [83]
    D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
    [84]
    C. Lin, X. Liu, X. Yong, J. S. Tse, J. S. Smith, N. J. English, B. Wang, M. Li, W. Yang, and H.-K. Mao, “Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII,” Proc. Natl. Acad. Sci. U. S. A. 117, 15437–15442 (2020).10.1073/pnas.2007959117
    [85]
    C. Lin, X. Liu, D. Yang, X. Li, J. S. Smith, B. Wang, H. Dong, S. Li, W. Yang, and J. S. Tse, “Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression,” Phys. Rev. Lett. 125, 155702 (2020).10.1103/physrevlett.125.155702
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (273) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return