Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Bott A. F. A., Chen L., Tzeferacos P., Palmer C. A. J., Bell A. R., Bingham R., Birkel A., Froula D. H., Katz J., Kunz M. W., Li C.-K., Park H-S., Petrasso R., Ross J. S., Reville B., Ryu D., Séguin F. H., White T. G., Schekochihin A. A., Lamb D. Q., Gregori G.. Insensitivity of a turbulent laser-plasma dynamo to initial conditions[J]. Matter and Radiation at Extremes, 2022, 7(4): 046901. doi: 10.1063/5.0084345
Citation: Bott A. F. A., Chen L., Tzeferacos P., Palmer C. A. J., Bell A. R., Bingham R., Birkel A., Froula D. H., Katz J., Kunz M. W., Li C.-K., Park H-S., Petrasso R., Ross J. S., Reville B., Ryu D., Séguin F. H., White T. G., Schekochihin A. A., Lamb D. Q., Gregori G.. Insensitivity of a turbulent laser-plasma dynamo to initial conditions[J]. Matter and Radiation at Extremes, 2022, 7(4): 046901. doi: 10.1063/5.0084345

Insensitivity of a turbulent laser-plasma dynamo to initial conditions

doi: 10.1063/5.0084345
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: abott@princeton.edu
  • Received Date: 2022-01-05
  • Accepted Date: 2022-05-19
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.
  • loading
  • [1]
    L. Biermann and A. Schluter, “Cosmic radiation and cosmic magnetic fields. II. Origin of cosmic magnetic fields,” Phys. Rev. 82, 863 (1951).10.1103/physrev.82.863
    [2]
    V. Vacca, M. Murgia, F. Govoni, T. Enßlin, N. Oppermann, L. Feretti, G. Giovannini, and F. Loi, “Magnetic fields in galaxy clusters and in the large-scale structure of the universe,” Galaxies 6, 142 (2018).10.3390/galaxies6040142
    [3]
    G. K. Batchelor, “On the spontaneous magnetic field in a conducting liquid in turbulent motion,” Proc. R. Soc. London, Ser. A 201, 405 (1950).10.1098/rspa.1950.0069
    [4]
    D. Ryu, H. Kang, J. Cho, and S. Das, “Turbulence and magnetic fields in the large-scale structure of the universe,” Science 320, 909 (2008).10.1126/science.1154923
    [5]
    A. Kazantsev, “Enhancement of a magnetic field by a conducting fluid,” Sov. JETP 26, 1031 (1968); available at http://jetp.ras.ru/cgi-bin/e/index/e/26/5/p1031?a=list.
    [6]
    S. I. Vainstein and Y. B. Zel’dovich, “Review of topical problems: Origin of magnetic fields in astrophysics (turbulent ‘dynamo’ mechanisms),” Sov. Phys. Usp. 15, 159 (1972).10.1070/pu1972v015n02abeh004960
    [7]
    Y. B. Zel’dovich, A. A. Ruzmaikin, S. A. Molchanov, and D. D. Sololov, “Kinematic dynamo problem in a linear velocity field,” J. Fluid Mech. 144, 1 (1984).10.1017/s0022112084001488
    [8]
    R. M. Kulsrud and S. W. Anderson, “The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field,” Astrophys. J. 396, 606 (1992).10.1086/171743
    [9]
    M. Meneguzzi, U. Frisch, and A. Pouquet, “Helical and nonhelical turbulent dynamos,” Phys. Rev. Lett. 47, 1060 (1981).10.1103/physrevlett.47.1060
    [10]
    S. Kida, S. Yanase, and J. Mizushima, “Statistical properties of MHD turbulence and turbulent dynamo,” Phys. Fluids A 3, 457 (1991).10.1063/1.858102
    [11]
    R. S. Miller, F. Mashayek, V. Adumitroaie, and P. Givi, “Structure of homogeneous nonhelical magnetohydrodynamic turbulence,” Phys. Plasmas 3, 3304 (1996).10.1063/1.871599
    [12]
    J. Cho and E. T. Vishniac, “The generation of magnetic fields through driven turbulence,” Astrophys. J. 538, 217 (2001).10.1086/309127
    [13]
    A. A. Schekochihin, S. C. Cowley, S. F. Taylor, J. L. Maron, and J. C. McWilliams, “Simulations of the small-scale turbulent dynamo,” Astrophys. J. 612, 276 (2004).10.1086/422547
    [14]
    N. E. Haugen, A. Brandenburg, and W. Dobler, “Simulations of nonhelical hydromagnetic turbulence,” Phys. Rev. E 70, 016308 (2004).10.1103/PhysRevE.70.016308
    [15]
    A. A. Schekochihin, A. B. Iskakov, S. C. Cowley, J. C. McWilliams, M. R. E. Proctor, and T. A. Yousef, “Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers,” New J. Phys. 9, 300 (2007).10.1088/1367-2630/9/8/300
    [16]
    J. Cho and D. Ryu, “Characteristic lengths of magnetic field in magnetohydrodynamic turbulence,” Astrophys. J. 705, L90 (2009).10.1088/0004-637x/705/1/l90
    [17]
    A. Beresnyak, “Universal nonlinear small-scale dynamo,” Phys. Rev. Lett. 108, 035002 (2012).10.1103/PhysRevLett.108.035002
    [18]
    D. H. Porter, T. W. Jones, and D. Ryu, “Vorticity, shocks, and magnetic fields in subsonic, ICM-like turbulence gas motions in the intra-cluster medium,” Astrophys. J. 810, 93 (2015).10.1088/0004-637x/810/2/93
    [19]
    A. Seta, P. J. Bushby, A. Shukurov, and T. S. Wood, “Saturation mechanism of the fluctuation dynamo at PrM ≥ 1,” Phys. Rev. Fluids 5, 043702 (2020).10.1103/physrevfluids.5.043702
    [20]
    F. Rincon, “Dynamo theories,” J. Plasma Phys. 85, 205850401 (2019).10.1017/s0022377819000539
    [21]
    D. A. St-Onge, M. W. Kunz, J. Squire, and A. A. Schekochihin, “Fluctuation dynamo in a weakly collisional plasma,” J. Plasma Phys. 86, 905860503 (2020).10.1017/s0022377820000860
    [22]
    A. Seta and C. Federrath, “Saturation mechanism of the fluctuation dynamo in supersonic turbulent plasmas,” Phys. Rev. Fluids 6, 103701 (2021).10.1103/physrevfluids.6.103701
    [23]
    C. L. Carilli and G. B. Taylor, “Cluster magnetic fields,” Annu. Rev. Astron. Astrophys. 40, 319 (2002).10.1146/annurev.astro.40.060401.093852
    [24]
    F. Govoni and L. Feretti, “Magnetic fields in clusters of galaxies,” Int. J. Mod. Phys. D 13, 1549 (2004).10.1142/s0218271804005080
    [25]
    R. Beck, “Magnetic fields in spiral galaxies,” Astron. Astrophys. Rev. 24, 4 (2016).10.1007/s00159-015-0084-4
    [26]
    R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu, “The protogalactic origin for cosmic magnetic fields,” Astrophys. J. 480, 481 (1997).10.1086/303987
    [27]
    P. Bhat and K. Subramanian, “Fluctuation dynamo at finite correlation times and the Kazantsev spectrum,” Astrophys. J. Lett. 791, L34 (2014).10.1088/2041-8205/791/2/l34
    [28]
    A. Seta and C. Federrath, “Seed magnetic fields in turbulent small-scale dynamos,” Mon. Not. R. Astron. Soc. 499, 2076 (2020).10.1093/mnras/staa2978
    [29]
    A. Gailitis, O. Lielausis, S. Dement’ev, E. Platacis, A. Cifersons, G. Gerbeth, T. Gundrum, F. Stefani, M. Christen, H. Hänel, and G. Will, “Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility,” Phys. Rev. Lett. 84, 4365 (2000).10.1103/physrevlett.84.4365
    [30]
    A. Gailitis, O. Lielausis, E. Platacis, S. Dement’ev, A. Cifersons, G. Gerbeth, T. Gundrum, F. Stefani, M. Christen, and G. Will, “Magnetic field saturation in the Riga dynamo experiment,” Phys. Rev. Lett. 86, 3024 (2001).10.1103/physrevlett.86.3024
    [31]
    R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin, P. Odier, J. F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié, and F. Ravelet, “Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium,” Phys. Rev. Lett. 98, 044502 (2007).10.1103/PhysRevLett.98.044502
    [32]
    G. Gregori, A. Ravasio, C. D. Murphy, K. Schaar, A. Baird, A. R. Bell, A. Benuzzi-Mounaix, R. Bingham, C. Constantin, R. P. Drake, M. Edwards, E. T. Everson, C. D. Gregory, Y. Kuramitsu, W. Lau, J. Mithen, C. Niemann, H.-S. Park, B. A. Remington, B. Reville, A. P. L. Robinson, D. D. Ryutov, Y. Sakawa, S. Yang, N. C. Woolsey, M. Koenig, and F. Miniati, “Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves,” Nature 481, 480 (2012).10.1038/nature10747
    [33]
    J. Meinecke, H. W. Doyle, F. Miniati, A. R. Bell, R. Bingham, R. Crowston, R. P. Drake, M. Fatenejad, M. Koenig, Y. Kuramitsu, C. C. Kuranz, D. Q. Lamb, D. Lee, M. J. MacDonald, C. D. Murphy, H.-S. Park, A. Pelka, A. Ravasio, Y. Sakawa, A. A. Schekochihin, A. Scopatz, P. Tzeferacos, W. C. Wan, N. C. Woolsey, R. Yurchak, B. Reville, and G. Gregori, “Turbulent amplification of magnetic fields in laboratory laser-produced shock waves,” Nat. Phys. 10, 520 (2014).10.1038/nphys2978
    [34]
    J. Meinecke, P. Tzeferacos, A. Bell, R. Bingham, R. Clarke, E. Churazov, R. Crowston, H. Doyle, R. P. Drake, R. Heathcote, M. Koenig, Y. Kuramitsu, C. Kuranz, D. Lee, M. MacDonald, C. Murphy, M. Notley, H.-S. Park, A. Pelka, A. Ravasio, B. Reville, Y. Sakawa, W. Wan, N. Woolsey, R. Yurchak, F. Miniati, A. Schekochihin, D. Lamb, and G. Gregori, “Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas,” Proc. Natl. Acad. Sci. U. S. A. 112, 8211 (2015).10.1073/pnas.1502079112
    [35]
    G. Gregori, B. Reville, and F. Miniati, “The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers,” Phys. Rep. 601, 1 (2015).10.1016/j.physrep.2015.10.002
    [36]
    P. Tzeferacos, A. Rigby, A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, E. M. Churazov, J. Emig, N. Flocke, F. Fiuza, C. B. Forest, J. Foster, C. Graziani, J. Katz, M. Koenig, C.-K. Li, J. Meinecke, R. Petrasso, H.-S. Park, B. A. Remington, J. S. Ross, D. Ryu, D. Ryutov, K. Weide, T. G. White, B. Reville, F. Miniati, A. A. Schekochihin, D. H. Froula, G. Gregori, and D. Q. Lamb, “Numerical modelling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo,” Phys. Plasmas 24, 041404 (2017).10.1063/1.4978628
    [37]
    P. Tzeferacos, A. Rigby, A. F. A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, E. M. Churazov, J. Emig, F. Fiuza, C. B. Forest, J. Foster, C. Graziani, J. Katz, M. Koenig, C.-K. Li, J. Meinecke, R. Petrasso, H.-S. Park, B. A. Remington, J. S. Ross, D. Ryu, D. Ryutov, T. G. White, B. Reville, F. Miniati, A. A. Schekochihin, D. Q. Lamb, D. H. Froula, and G. Gregori, “Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma,” Nat. Commun. 9, 591 (2018).10.1038/s41467-018-02953-2
    [38]
    A. F. A. Bott, P. Tzeferacos, L. Chen, C. A. J. Palmer, A. Rigby, A. R. Bell, R. Bingham, A. Birkel, C. Graziani, D. H. Froula, J. Katz, M. Koenig, M. W. Kunz, C. Li, J. Meinecke, F. Miniati, R. Petrasso, H. S. Park, B. A. Remington, B. Reville, J. S. Ross, D. Ryu, D. Ryutov, F. H. Séguin, T. G. White, A. A. Schekochihin, D. Q. Lamb, and G. Gregori, “Time resolved turbulent dynamo in a laser-plasma,” Proc. Natl. Acad. Sci. U. S. A. 118, e2015729118 (2021).10.1073/pnas.2015729118
    [39]
    S. A. Muller, D. N. Kaczala, H. M. Abu-Shawareb, E. L. Alfonso, L. C. Carlson, M. Mauldin, P. Fitzsimmons, D. Lamb, P. Tzeferacos, L. Chen, G. Gregori, A. Rigby, A. Bott, T. G. White, D. Froula, and J. Katz, “Evolution of the design and fabrication of astrophysics targets for turbulent dynamo (TDYNO) experiments on OMEGA,” Fusion Sci. Technol. 73, 434 (2017).10.1080/15361055.2017.1396097
    [40]
    A. F. A. Bott, L. Chen, G. Boutoux, T. Caillaud, A. Duval, M. Koenig, B. Khiar, I. Lantuéjoul, L. Le-Deroff, B. Reville, R. Rosch, D. Ryu, C. Spindloe, B. Vauzour, B. Villette, A. A. Schekochihin, D. Q. Lamb, P. Tzeferacos, G. Gregori, and A. Casner, “Inefficient magnetic-field amplification in supersonic laser-plasma turbulence,” Phys. Rev. Lett. 127, 175002 (2021).10.1103/PhysRevLett.127.175002
    [41]
    T. G. White, M. T. Oliver, P. Mabey, M. Kühn-Kauffeldt, A. F. A. Bott, L. N. K. Döhl, A. R. Bell, R. Bingham, R. Clarke, J. Foster, G. Giacinti, P. Graham, R. Heathcote, M. Koenig, Y. Kuramitsu, D. Q. Lamb, J. Meinecke, Th. Michel, F. Miniati, M. Notley, B. Reville, D. Ryu, S. Sarkar, Y. Sakawa, M. P. Selwood, J. Squire, R. H. H. Scott, P. Tzeferacos, N. Woolsey, A. A. Schekochihin, and G. Gregori, “Supersonic plasma turbulence in the laboratory,” Nat. Commun. 10, 1758 (2019).
    [42]
    J. Meinecke, P. Tzeferacos, J. S. Ross, A. F. A. Bott, S. Feister, H. S. Park, A. R. Bell, R. Blandford, R. L. Berger, R. Bingham, A. Casner, L. E. Chen, J. Foster, D. H. Froula, C. Goyon, D. Kalantar, M. Koenig, B. Lahmann, C. Li, Y. Lu, C. A. J. Palmer, R. D. Petrasso, H. Poole, B. Remington, B. Reville, A. Reyes, A. Rigby, D. Ryu, G. Swadling, A. Zylstra, F. Miniati, S. Sarkar, A. A. Schekochihin, D. Q. Lamb, and G. Gregori, “Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas,” Sci. Adv. 8, eabj6799 (2022).10.1126/sciadv.abj6799
    [43]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2
    [44]
    L. E. Chen, A. F. A. Bott, P. Tzeferacos, A. Rigby, A. Bell, R. Bingham, C. Graziani, J. Katz, M. Koenig, C. K. Li, R. Petrasso, H.-S. Park, J. S. Ross, D. Ryu, T. G. White, B. Reville, J. Matthews, J. Meinecke, F. Miniati, E. G. Zweibel, S. Sarkar, A. A. Schekochihin, D. Q. Lamb, D. H. Froula, and G. Gregori, “Transport of high-energy charged particles through spatially intermittent turbulent magnetic fields,” Astrophys. J. 892, 114 (2020).10.3847/1538-4357/ab7a19
    [45]
    O. V. Gotchev, J. P. Knauer, P. Y. Chang, N. W. Jang, M. J. Shoup III, D. D. Meyerhofer, and R. Betti, “Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas,” Rev. Sci. Instrum. 80, 043504 (2009).10.1063/1.3115983
    [46]
    G. Fiksel, A. Agliata, D. Barnak, G. Brent, P.-Y. Chang, L. Folnsbee, G. Gates, D. Hasset, D. Lonobile, J. Magoon, D. Mastrosimone, M. J. Shoup III, and R. Betti, “Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility,” Rev. Sci. Instrum. 86, 016105 (2015).10.1063/1.4905625
    [47]
    J. D. Kilkenny, P. Bell, R. Hanks, G. Power, R. E. Turner, and J. Wiedwald, “High-speed gated x-ray imagers (invited),” Rev. Sci. Instrum. 59, 1793 (1988).10.1063/1.1140115
    [48]
    D. K. Bradley, P. M. Bell, O. L. Landen, J. D. Kilkenny, and J. Oertel, “Development and characterization of a pair of 30–40 ps x-ray framing cameras,” Rev. Sci. Instrum. 66, 716 (1995).10.1063/1.1146268
    [49]
    E. Churazov, A. Vikhlinin, I. Zhuravleva, A. Schekochihin, I. Parrish, R. Sunyaev, W. Forman, H. Böhringer, and S. Randall, “X-ray surface brightness and gas density fluctuations in the coma cluster,” Mon. Not. R. Astron. Soc. 421, 1123 (2012).10.1111/j.1365-2966.2011.20372.x
    [50]
    I. Zhuravleva, E. M. Churazov, A. A. Schekochihin, E. T. Lau, D. Nagai, M. Gaspari, S. W. Allen, K. Nelson, and I. J. Parrish, “The relation between gas density and velocity power spectra in galaxy clusters: Qualitative treatment and cosmological simulations,” Astrophys. J., Lett. 788, L13 (2014).10.1088/2041-8205/788/1/l13
    [51]
    D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasmas,” Rep. Prog. Phys. 32, 207 (1969).10.1088/0034-4885/32/1/305
    [52]
    B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic Press, New York, 1961).
    [53]
    F. H. Séguin, J. A. Frenje, C. K. Li, D. G. Hicks, S. Kurebayashi, J. R. Rygg, B.-E. Schwartz, and R. D. Petrasso, “Spectrometry of charged particles from inertial-confinement-fusion plasmas,” Rev. Sci. Instrum. 74, 975 (2003).10.1063/1.1518141
    [54]
    C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, P. A. Amendt, S. P. Hatchett, O. L. Landen, A. J. Mackinnon, P. K. Patel, V. A. Smalyuk, T. C. Sangster, and J. P. Knauer, “Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography,” Phys. Rev. Lett. 97, 135003 (2006).10.1103/physrevlett.97.135003
    [55]
    M. J.-E. Manuel, A. B. Zylstra, H. G. Rinderknecht, D. T. Casey, M. J. Rosenberg, N. Sinenian, C. K. Li, J. A. Frenje, F. H. Séguin, and R. D. Petrasso, “Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA,” Rev. Sci. Instrum. 83, 063506 (2012).10.1063/1.4730336
    [56]
    C. A. J. Palmer, P. T. Campbell, Y. Ma, L. Antonelli, A. F. A. Bott, G. Gregori, J. Halliday, Y. Katzir, P. Kordell, K. Krushelnick, S. V. Lebedev, E. Montgomery, M. Notley, D. C. Carroll, C. P. Ridgers, A. A. Schekochihin, M. J. V. Streeter, A. G. R. Thomas, E. R. Tubman, N. Woolsey, and L. Willingale, “Field reconstruction from proton radiography of intense laser driven magnetic reconnection,” Phys. Plasmas 26, 083109 (2019).10.1063/1.5092733
    [57]
    D. B. Schaeffer, W. Fox, R. K. Follett, G. Fiksel, C. K. Li, J. Matteucci, A. Bhattacharjee, and K. Germaschewski, “Direct observations of particle dynamics in magnetized collisionless shock precursors in laser-produced plasmas,” Phys. Rev. Lett. 122, 245001 (2019).10.1103/physrevlett.122.245001
    [58]
    P. T. Campbell, C. A. Walsh, B. K. Russell, J. P. Chittenden, A. Crilly, G. Fiksel, P. M. Nilson, A. G. R. Thomas, K. Krushelnick, and L. Willingale, “Magnetic signatures of radiation-driven double ablation fronts,” Phys. Rev. Lett. 125, 145001 (2020).10.1103/physrevlett.125.145001
    [59]
    E. R. Tubman, A. S. Joglekar, A. F. A. Bott, M. Borghesi, B. Coleman, G. Cooper, C. N. Danson, P. Durey, J. M. Foster, P. Graham, G. Gregori, E. T. Gumbrell, M. P. Hill, T. Hodge, S. Kar, R. J. Kingham, M. Read, C. P. Ridgers, J. Skidmore, C. Spindloe, A. G. R. Thomas, P. Treadwell, S. Wilson, L. Willingale, and N. C. Woolsey, “Observations of pressure anisotropy effects within semi collisional magnetized plasma bubbles,” Nat. Commun. 12, 334 (2021).10.1038/s41467-020-20387-7
    [60]
    A. F. A. Bott, C. Graziani, T. G. White, P. Tzeferacos, D. Q. Lamb, G. Gregori, and A. A. Schekochihin, “Proton imaging of stochastic magnetic fields,” J. Plasma Phys. 83, 905830614 (2017).10.1017/s0022377817000939
    [61]
    M. F. Kasim, A. F. A. Bott, P. Tzeferacos, D. Q. Lamb, G. Gregori, and S. M. Vinko, “Retrieving fields from proton radiography without source profiles,” Phys. Rev. E 100, 033208 (2019).10.1103/PhysRevE.100.033208
    [62]
    A. Rigby, J. Katz, A. F. A. Bott, T. G. White, P. Tzeferacos, D. Q. Lamb, D. H. Froula, and G. Gregori, “Implementation of a Faraday rotation diagnostic at the OMEGA laser facility,” High Power Laser Sci. Eng. 6, E49 (2018).10.1017/hpl.2018.42
    [63]
    N. L. Kugland, D. D. Ryutov, C. Plechaty, J. S. Ross, and H.-S. Park, “Relation between electric and magnetic field structures and their proton-beam images,” Rev. Sci. Instrum. 83, 101301 (2012).10.1063/1.4750234
    [64]
    C. Federrath, G. Chabrier, J. Schober, R. Banerjee, R. S. Klessen, and D. R. G. Schleicher, “Mach number dependence of turbulent magnetic field amplification: Solenoidal versus compressive flows,” Phys. Rev. Lett. 107, 114504 (2011).10.1103/physrevlett.107.114504
    [65]
    R. Achikanath Chirakkara, C. Federrath, P. Trivedi, and R. Banerjee, “Efficient highly subsonic turbulent dynamo and growth of primordial magnetic fields,” Phys. Rev. Lett. 126, 091103 (2021).10.1103/PhysRevLett.126.091103
    [66]
    B. Srinivasan, G. Dimonte, and X.-Z. Tang, “Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002
    [67]
    S. I. Braginskii, in Transport Processes in a Plasma, Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.
    [68]
    M. G. Haines, “Magnetic-field generation in laser fusion and hot-electron transport,” Can. J. Phys. 64, 912 (1986).10.1139/p86-160
    [69]
    C. A. Walsh, J. P. Chittenden, K. McGlinchey, N. P. L. Niasse, and B. D. Appelbe, “Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility,” Phys. Rev. Lett. 118, 155001 (2017).10.1103/physrevlett.118.155001
    [70]
    P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, and D. D. Meyerhofer, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107, 035006 (2011).10.1103/PhysRevLett.107.035006
    [71]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (163) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return