Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Zhang Yuxue, Qing Bo, Zhao Yang, Song Tianming, Zhang Zhiyu, Xiong Gang, Huang Chengwu, Zhu Tuo, Lv Min, Zhao Yan, Zhang Jiyan, Yang Jiamin. Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH[J]. Matter and Radiation at Extremes, 2022, 7(4): 045902. doi: 10.1063/5.0081960
Citation: Zhang Yuxue, Qing Bo, Zhao Yang, Song Tianming, Zhang Zhiyu, Xiong Gang, Huang Chengwu, Zhu Tuo, Lv Min, Zhao Yan, Zhang Jiyan, Yang Jiamin. Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH[J]. Matter and Radiation at Extremes, 2022, 7(4): 045902. doi: 10.1063/5.0081960

Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH

doi: 10.1063/5.0081960
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: jiyanzhangzjy@sina.com and yjm70018@sina.cn; a)Authors to whom correspondence should be addressed: jiyanzhangzjy@sina.com and yjm70018@sina.cn
  • Received Date: 2021-12-11
  • Accepted Date: 2022-05-23
  • Available Online: 2022-07-01
  • Publish Date: 2022-07-01
  • A practical experimental method is proposed to investigate thermal transport by characterizing the motion of plasma flows through a x-ray spectroscopic technique using tracers. By simultaneously measuring multiple parameters, namely, the mass-ablation rate, the temporal evolution of plasma flow velocities and trajectories and the temperature, it is possible to observe a variety of physical processes, such as shock wave compression, heating by thermal waves, and plasma thermal expansion, and to determine their relative importance in different phases during the irradiation of CH and Au targets. From a comparison with hydrodynamic simulations, we find significant differences in the motion of the plasma flows between CH and Au, which can be attributed to different sensitivities to the thermal transport process. There are also differences in the ablation and electron temperature histories of the two materials. These results confirm that velocities and trajectories of plasma motion can provide useful evidence in the investigation of thermal conduction, and the approach presented here deserves more attention in the context of inertial confinement fusion and high-energy-density physics.
  • loading
  • [1]
    S. Li, G. Ren, and W. Y. Huo, “Laser ablation under different electron heat conduction models in inertial confinement fusion,” High Energy Density Phys. 27, 12–17 (2018).10.1016/j.hedp.2018.04.001
    [2]
    J. A. Tarvin, W. B. Fechner, J. T. Larsen, P. D. Rockett, and D. C. Slater, “Mass-ablation rates in a spherical laser-produced plasma,” Phys. Rev. Lett. 51, 1355–1358 (1983).10.1103/physrevlett.51.1355
    [3]
    P. A. Jaanimagi, J. Delettrez, B. L. Henke, and M. C. Richardson, “Temporal dependence of the mass-ablation rate in uv-laser-irradiated spherical targets,” Phys. Rev. A 34, 1322–1327 (1986).10.1103/physreva.34.1322
    [4]
    R. E. Olson, G. A. Rochau, O. L. Landen, and R. J. Leeper, “X-ray ablation rates in inertial confinement fusion capsule materials,” Phys. Plasmas 18, 032706 (2011).10.1063/1.3566009
    [5]
    X. T. He, “The updated advancements of inertial confinement fusion program in China,” J. Phys.: Conf. Ser. 688, 012029 (2016).10.1088/1742-6596/688/1/012029
    [6]
    J. M. Soures, R. L. McCrory, C. P. Verdon, A. Babushkin, R. E. Bahr, T. R. Boehly, R. Boni, D. K. Bradley, D. L. Brown, R. S. Craxton, J. A. Delettrez, W. R. Donaldson, R. Epstein, P. A. Jaanimagi, S. D. Jacobs, K. Kearney, R. L. Keck, J. H. Kelly, T. J. Kessler, R. L. Kremens, J. P. Knauer, S. A. Kumpan, S. A. Letzring, D. J. Lonobile, S. J. Loucks, L. D. Lund, F. J. Marshall, P. W. McKenty, D. D. Meyerhofer, S. F. B. Morse, A. Okishev, S. Papernov, G. Pien, W. Seka, R. Short, M. J. Shoup, M. Skeldon, S. Skupsky, A. W. Schmid, D. J. Smith, S. Swales, M. Wittman, and B. Yaakobi, “Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system,” Phys. Plasmas 3, 2108–2112 (1996).10.1063/1.871662
    [7]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [8]
    C. J. Cerjan, L. Bernstein, L. B. Hopkins, R. M. Bionta, D. L. Bleuel, J. A. Caggiano, W. S. Cassata, C. R. Brune, D. Fittinghoff, J. Frenje, M. Gatu-Johnson, N. Gharibyan, G. Grim, C. Hagmann, A. Hamza, R. Hatarik, E. P. Hartouni, E. A. Henry, H. Herrmann, N. Izumi, D. H. Kalantar, H. Y. Khater, Y. Kim, A. Kritcher, Y. A. Litvinov, F. Merrill, K. Moody, P. Neumayer, A. Ratkiewicz, H. G. Rinderknecht, D. Sayre, D. Shaughnessy, B. Spears, W. Stoeffl, R. Tommasini, C. Yeamans, C. Velsko, M. Wiescher, M. Couder, A. Zylstra, and D. Schneider, “Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research,” J. Phys. G: Nucl. Part. Phys. 45, 033003 (2018).10.1088/1361-6471/aa8693
    [9]
    S. I. Ashitkov, P. S. Komarov, V. V. Zhakhovsky, Y. V. Petrov, V. A. Khokhlov, A. A. Yurkevich, D. K. Ilnitsky, N. A. Inogamov, and M. B. Agranat, “Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling,” J. Phys.: Conf. Ser. 774, 012097 (2016).10.1088/1742-6596/774/1/012097
    [10]
    J. Zheng, L. Kuang, S. Jiang, L. Zhang, H. Li, and F. Wang, “Mitigating wall plasma expansion and enhancing x-ray emission by using multilayer gold films as hohlraum material,” Nucl. Fusion 61, 086004 (2021).10.1088/1741-4326/ac04f5
    [11]
    F. Vidal, J. P. Matte, M. Casanova, and O. Larroche, “Modeling and effects of nonlocal electron heat flow in planar shock waves,” Phys. Plasmas 2, 1412–1420 (1995).10.1063/1.871357
    [12]
    X. Zeng, X. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities,” J. Phys. D: Appl. Phys. 37, 1132–1136 (2004).10.1088/0022-3727/37/7/029
    [13]
    Y. Aglitskiy, M. Karasik, A. L. Velikovich, N. Metzler, S. T. Zalesak, A. J. Schmitt, J. H. Gardner, V. Serlin, J. Weaver, and S. P. Obenschain, “Classical and ablative Richtmyer–Meshkov instability and other ICF-relevant plasma flows diagnosed with monochromatic x-ray imaging,” Phys. Scr. 2008 (T132), 014021.10.1088/0031-8949/2008/t132/014021
    [14]
    H. G. Rinderknecht, P. A. Amendt, M. J. Rosenberg, C. K. Li, J. A. Frenje, M. Gatu Johnson, H. Sio, F. H. Séguin, R. D. Petrasso, A. B. Zylstra, G. Kagan, N. M. Hoffman, D. Svyatsky, S. C. Wilks, V. Y. Glebov, C. Stoeckl, and T. C. Sangster, “Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF,” Nucl. Fusion 57, 066014 (2017).10.1088/1741-4326/aa69d9
    [15]
    E. Vold, G. Kagan, A. N. Simakov, K. Molvig, and L. Yin, “Self-similar solutions for multi-species plasma mixing by gradient driven transport,” Plasma Phys. Controlled Fusion 60, 054010 (2018).10.1088/1361-6587/aab38e
    [16]
    J. Hawreliak, D. M. Chambers, S. H. Glenzer, A. Gouveia, R. J. Kingham, R. S. Marjoribanks, P. A. Pinto, O. Renner, P. Soundhauss, S. Topping, E. Wolfrum, P. E. Young, and J. S. Wark, “Thomson scattering measurements of heat flow in a laser-produced plasma,” J. Phys. B: At., Mol. Opt. Phys. 37, 1541–1551 (2004).10.1088/0953-4075/37/7/013
    [17]
    A. Roettgen, I. Shkurenkov, M. Simeni Simeni, V. Petrishchev, I. V. Adamovich, and W. R. Lempert, “Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium,” Plasma Sources Sci. Technol. 25, 055009 (2016).10.1088/0963-0252/25/5/055009
    [18]
    K. Falk, M. Holec, C. J. Fontes, C. L. Fryer, C. W. Greeff, H. M. Johns, D. S. Montgomery, D. W. Schmidt, and M. Šmíd, “Measurement of preheat due to nonlocal electron transport in warm dense matter,” Phys. Rev. Lett. 120, 025002 (2018).10.1103/physrevlett.120.025002
    [19]
    W. Manheimer, D. Colombant, and A. Schmitt, “Analytic insights into nonlocal energy transport. I. Krook models,” Phys. Plasmas 25, 082711 (2018).10.1063/1.5039530
    [20]
    J. L. Peacher and K. M. Watson, “Doppler shift in frequency in the transport of electromagnetic waves through an underdense plasma,” J. Math. Phys. 11, 1496–1504 (1970).10.1063/1.1665286
    [21]
    O. S. Jones, L. J. Suter, H. A. Scott, M. A. Barrios, W. A. Farmer, S. B. Hansen, D. A. Liedahl, C. W. Mauche, A. S. Moore, M. D. Rosen, J. D. Salmonson, D. J. Strozzi, C. A. Thomas, and D. P. Turnbull, “Progress towards a more predictive model for hohlraum radiation drive and symmetry,” Phys. Plasmas 24, 056312 (2017).10.1063/1.4982693
    [22]
    J. L. Kline and J. D. Hager, “Aluminum X-ray mass-ablation rate measurements,” Matter Radiat. Extremes 2, 16–21 (2017).10.1016/j.mre.2016.09.003
    [23]
    C. R. Stillman, P. M. Nilson, A. B. Sefkow, S. T. Ivancic, C. Mileham, I. A. Begishev, and D. H. Froula, “Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems,” Phys. Rev. E 97, 063208 (2018).10.1103/PhysRevE.97.063208
    [24]
    E. G. Hill, G. Pérez-Callejo, and S. J. Rose, “ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package,” High Energy Density Phys. 26, 56–67 (2018).10.1016/j.hedp.2018.01.002
    [25]
    S. Fujioka, H. Nishimura, K. Nishihara, A. Sasaki, A. Sunahara, T. Okuno, N. Ueda, T. Ando, Y. Tao, Y. Shimada, K. Hashimoto, M. Yamaura, K. Shigemori, M. Nakai, K. Nagai, T. Norimatsu, T. Nishikawa, N. Miyanaga, Y. Izawa, and K. Mima, “Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas,” Phys. Rev. Lett. 95, 235004 (2005).10.1103/physrevlett.95.235004
    [26]
    Z. Zhang and G. Gogos, “Theory of shock wave propagation during laser ablation,” Phys. Rev. B 69, 235403 (2004).10.1103/physrevb.69.235403
    [27]
    S. P. Regan, R. Epstein, V. N. Goncharov, I. V. Igumenshchev, D. Li, P. B. Radha, H. Sawada, W. Seka, T. R. Boehly, J. A. Delettrez, O. V. Gotchev, J. P. Knauer, J. A. Marozas, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, T. C. Sangster, D. Shvarts, S. Skupsky, V. A. Smalyuk, B. Yaakobi, and R. C. Mancini, “Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion,” Phys. Plasmas 14, 056305 (2007).10.1063/1.2671690
    [28]
    R. F. Schmalz, J. Meyer-ter-Vehn, and R. Ramis, “Radiation heat wave as a basic feature in laser-irradiated foils,” Phys. Rev. A 34, 2177–2184 (1986).10.1103/physreva.34.2177
    [29]
    G. Schurtz, S. Gary, S. Hulin, C. Chenais-Popovics, J. C. Gauthier, F. Thais, J. Breil, F. Durut, J. L. Feugeas, P. H. Maire, P. Nicolaï, O. Peyrusse, C. Reverdin, G. Soullié, V. Tikhonchuk, B. Villette, and C. Fourment, “Revisiting nonlocal electron-energy transport in inertial-fusion conditions,” Phys. Rev. Lett. 98, 095002 (2007).10.1103/PhysRevLett.98.095002
    [30]
    C. P. Ridgers, R. J. Kingham, and A. G. Thomas, “Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas,” Phys. Rev. Lett. 100, 075003 (2008).10.1103/PhysRevLett.100.075003
    [31]
    D. R. Gray and J. D. Kilkenny, “The measurement of ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma,” Phys. Plasmas 22, 81–111 (1980).10.1088/0032-1028/22/2/001
    [32]
    H. C. Barr and T. J. M. Boyd, “Ion turbulence and thermal transport in laser-produced plasmas,” J. Plasma Phys. 27, 525–542 (1982).10.1017/s0022377800011065
    [33]
    J. Li, B. Zhao, H. Li, and J. Zheng, “Study of flux limiter using Fokker–Planck and fluid simulations of planar laser-driven ablation,” Plasma Phys. Controlled Fusion 52, 085008 (2010).10.1088/0741-3335/52/8/085008
    [34]
    M. A. Barrios, D. A. Liedahl, M. B. Schneider, O. Jones, G. V. Brown, S. P. Regan, K. B. Fournier, A. S. Moore, J. S. Ross, O. Landen, R. L. Kauffman, A. Nikroo, J. Kroll, J. Jaquez, H. Huang, S. B. Hansen, D. A. Callahan, D. E. Hinkel, D. Bradley, and J. D. Moody, “Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility,” Phys. Plasmas 23, 056307 (2016).10.1063/1.4948276
    [35]
    M. A. Barrios, J. D. Moody, L. J. Suter, M. Sherlock, H. Chen, W. Farmer, J. Jaquez, O. Jones, R. L. Kauffman, J. D. Kilkenny, J. Kroll, O. L. Landen, D. A. Liedahl, S. A. Maclaren, N. B. Meezan, A. Nikroo, M. B. Schneider, D. B. Thorn, K. Widmann, and G. Pérez-Callejo, “Developing an experimental basis for understanding transport in NIF hohlraum plasmas,” Phys. Rev. Lett. 121, 095002 (2018).10.1103/PhysRevLett.121.095002
    [36]
    M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan, R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter, R. A. London, J. A. Harte, and G. B. Zimmerman, “The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums,” High Energy Density Phys. 7, 180–190 (2011).10.1016/j.hedp.2011.03.008
    [37]
    E. M. Epperlein, “Fokker–Planck modeling of electron transport in laser-produced plasmas,” Laser Part. Beams 12, 257–272 (1994).10.1017/s0263034600007722
    [38]
    A. Sunahara, K. Mima, T. Johzaki, and H. Nagatomo, “Non-local electron transport in laser-produced plasmas,” J. Phys. IV 133, 193–195 (2006).10.1051/jp4:2006133038
    [39]
    PDT, TMS, and GOD Group, “Observation of the non-local electron transport effect by using phase zone plate,” J. Phys.: Conf. Ser. 112, 022008 (2008).10.1088/1742-6596/112/2/022008
    [40]
    A. G. R. Thomas, M. Tzoufras, A. P. L. Robinson, R. J. Kingham, C. P. Ridgers, M. Sherlock, and A. R. Bell, “A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma,” J. Comput. Phys. 231, 1051–1079 (2012), part of Special Issue: Computational Plasma Physics.10.1016/j.jcp.2011.09.028
    [41]
    H. G. Rinderknecht, H. S. Park, J. S. Ross, P. A. Amendt, D. P. Higginson, S. C. Wilks, D. Haberberger, J. Katz, D. H. Froula, N. M. Hoffman, G. Kagan, B. D. Keenan, and E. L. Vold, “Highly resolved measurements of a developing strong collisional plasma shock,” Phys. Rev. Lett. 120, 095001 (2018).10.1103/PhysRevLett.120.095001
    [42]
    D. Ya-Lin, Z. Bin, and Z. Jian, “Numerical investigation of non-local electron transport in laser-produced plasmas,” Chin. Phys. 16, 3742–3746 (2007).10.1088/1009-1963/16/12/031
    [43]
    T. Ott, M. Bonitz, and Z. Donkó, “Effect of correlations on heat transport in a magnetized strongly coupled plasma,” Phys. Rev. E 92, 063105 (2015).10.1103/PhysRevE.92.063105
    [44]
    M. Hauer, D. J. Funk, T. Lippert, and A. Wokaun, “Time resolved study of the laser ablation induced shockwave,” Thin Solid Films 453-454, 584–588 (2004), part of Special Issue: Proceedings of Symposium H on Photonic Processing of Surfaces, Thin Films and Devices, of the E-MRS 2003 Spring Conference.10.1016/j.tsf.2003.11.139
    [45]
    J. Zhang, G. Yang, X. Hu, J. Yang, Y. Ding, Y. Ding, B. Zhang, Z. Zheng, Y. Xu, J. Yan, and W. Pei, “Two-tracer spectroscopy diagnostics of temperature profile in the conduction layer of a laser-ablated plastic foil,” Phys. Plasmas 17, 113302 (2010).10.1063/1.3495978
    [46]
    J. D. Colvin, H. Matsukuma, K. C. Brown, J. F. Davis, G. E. Kemp, K. Koga, N. Tanaka, A. Yogo, Z. Zhang, H. Nishimura, and K. B. Fournier, “The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma,” Phys. Plasmas 25, 032702 (2018).10.1063/1.5012523
    [47]
    M. Tanabe et al., “Characterization of heat-wave propagation through laser-driven Ti-doped underdense plasma,” High Energy Density Phys. 6, 89–94 (2010).10.1016/j.hedp.2009.06.006
    [48]
    W. A. Farmer, O. S. Jones, M. A. Barrios, D. J. Strozzi, J. M. Koning, G. D. Kerbel, D. E. Hinkel, J. D. Moody, L. J. Suter, D. A. Liedahl, N. Lemos, D. C. Eder, R. L. Kauffman, O. L. Landen, A. S. Moore, and M. B. Schneider, “Heat transport modeling of the dot spectroscopy platform on NIF,” Plasma Phys. Controlled Fusion 60, 044009 (2018).10.1088/1361-6587/aaaefd
    [49]
    J. C. Stewart and K. D. J. Pyatt, Jr., “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203 (1966).10.1086/148714
    [50]
    [51]
    R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, “Multi—A computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Commun. 49, 475–505 (1988).10.1016/0010-4655(88)90008-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (211) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return