Citation: | Chu Y. Y., Wang Z., Qi J. M., Xu Z. P., Li Z. H.. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902. doi: 10.1063/5.0079074 |
[1] |
M. K. Matzen, “Z pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519 (1997).10.1063/1.872323
|
[2] |
M. G. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001
|
[3] |
T. W. L. Sanford et al., “Z-pinch-generated X rays demonstrate potential for indirect-drive ICF experiments,” Phys. Rev. Lett. 83, 5511 (1999).10.1103/physrevlett.83.5511
|
[4] |
C. L. Ruiz et al., “Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums,” Phys. Rev. Lett. 93, 015001 (2004).10.1103/physrevlett.93.015001
|
[5] | |
[6] |
W. A. Stygar et al., “Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments,” Phys. Rev. Spec. Top.–Accel. Beams 18, 110401 (2015).10.1103/PhysRevSTAB.18.110401
|
[7] |
N. B. Meezan et al., “Indirect drive ignition at the National Ignition Facility,” Plasma Phys. Controlled Fusion 59, 014021 (2017).10.1088/0741-3335/59/1/014021
|
[8] |
R. Betti et al., “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736
|
[9] |
O. A. Hurricane et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2016).10.1038/nature13008
|
[10] |
T. A. Mehlhorn et al., “Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies,” Plasma Phys. Controlled Fusion 45, A325 (2003).10.1088/0741-3335/45/12a/021
|
[11] |
C. Mao et al., “Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum,” Phys. Plasmas 28, 092706 (2021).10.1063/5.0057626
|
[12] |
J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
|
[13] |
J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998).
|
[14] |
E. M. Campbell et al., “Nova experiments facility (invited),” Rev. Sci. Instrum. 57, 2101 (1986).10.1063/1.1138755
|
[15] |
T. R. Boehly et al., “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2
|
[16] |
W. S. Varnum et al., “Progress toward ignition with noncryogenic double-shell capsules,” Phys. Rev. Lett. 84, 5153 (2000).10.1103/physrevlett.84.5153
|
[17] |
P. Amendt et al., “Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis,” Phys. Plasmas 9, 2221 (2002).10.1063/1.1459451
|
[18] |
P. Amendt et al., “An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy,” Nucl. Fusion 50, 105006 (2010).10.1088/0029-5515/50/10/105006
|
[19] |
D. S. Montgomery et al., “Design considerations for indirectly driven double shell capsules,” Phys. Plasmas 25, 092706 (2018).10.1063/1.5042478
|
[20] |
D. C. Wilson et al., “Single and double shell ignition targets for the National Ignition Facility at 527 nm,” Phys. Plasmas 28, 052704 (2021).10.1063/5.0037338
|
[21] |
T. J. Nash et al., “High-temperature dynamic hohlraums on the pulsed power driver Z,” Phys. Plasmas 6, 2023 (1999).10.1063/1.873457
|
[22] |
R. Ramis et al., “MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations,” Comput. Phys. Commun. 203, 226 (2016).10.1016/j.cpc.2016.02.014
|
[23] |
R. M. More et al., “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059 (1988).10.1063/1.866963
|
[24] |
G. D. Tsakiris et al., “An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 38, 353 (1987).10.1016/0022-4073(87)90030-6
|
[25] |
S. A. Slutz et al., “Dynamic hohlraum driven inertial fusion capsules,” Phys. Plasmas 10, 1875 (2003).10.1063/1.1565117
|
[26] |
S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publications, Oxford, 2004).
|
[27] |
J. Lindl et al., “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
|
[28] |
R. Ramis et al., “MULTI2D—A computer code for two-dimensional radiation hydrodynamics,” Comput. Phys. Commun. 180, 977 (2009).10.1016/j.cpc.2008.12.033
|
[29] |
F. Wu et al., “A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations,” J. Comput. Phys. 357, 206 (2018).10.1016/j.jcp.2017.12.014
|
[30] |
F. Wu et al., “Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum,” Matter Radiat. Extremes 3, 248 (2018).10.1016/j.mre.2018.06.001
|
[31] |
T. R. Dittrich et al., “Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility,” Phys. Rev. Lett. 112, 055002 (2014).10.1103/PhysRevLett.112.055002
|
[32] |
D. T. Casey et al., “Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive,” Phys. Rev. Lett. 115, 105001 (2015).10.1103/physrevlett.115.105001
|
[33] |
L. F. Wang et al., “A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions,” Phys. Plasmas 23, 052713 (2016).10.1063/1.4952636
|
[34] |
D. E. Hinkel et al., “Development of improved radiation drive environment for high foot implosions at the National Ignition Facility,” Phys. Rev. Lett. 117, 225002 (2016).10.1103/physrevlett.117.225002
|
[35] |
D. J. Stark et al., “Detrimental effects and mitigation of the joint feature in double shell implosion simulations,” Phys. Plasmas 28, 052703 (2021).10.1063/5.0046435
|