Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Chu Y. Y., Wang Z., Qi J. M., Xu Z. P., Li Z. H.. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902. doi: 10.1063/5.0079074
Citation: Chu Y. Y., Wang Z., Qi J. M., Xu Z. P., Li Z. H.. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902. doi: 10.1063/5.0079074

Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum

doi: 10.1063/5.0079074
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: chuyanyun1230@163.com
  • Received Date: 2021-11-17
  • Accepted Date: 2022-03-20
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion. A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a >50 MA Z-pinch driver according to the scaling law of dynamic hohlraum radiation temperature vs drive current. Based on a uniform 300 eV radiation temperature profile with a width of 10 ns, three double-shell capsules with radii of 2, 2.5, and 3 mm are proposed, and the corresponding fusion yields from a one-dimensional calculation are 28.8, 56.1, and 101.6 MJ. The implosion dynamics of the 2.5 mm-radius capsule is investigated in detail. At ignition, the areal density of the fuel is about 0.53 g/cm2, the fuel pressure is about 80 Gbar, and the central ion temperature is about 4.5 keV, according to the one-dimensional simulation. A two-dimensional simulation indicates that the double-shell capsule can implode nearly spherically when driven by the radiation field of a Z-pinch dynamic hohlraum. The sensitivities of the fusion performance to the radiation temperature profiles and to deviations in the capsule parameter are investigated through one-dimensional simulation, and it is found that the capsule fusion yields are rather stable in a quite large parameter space. A one-dimensional simulation of a capsule embedded in 50 mg/cm3 CH foam indicates that the capsule performance does not change greatly in the mimicked environment of a Z-pinch dynamic hohlraum. The double-shell capsules designed here are also applicable to laser indirect-drive inertial fusion, if a laser facility can produce a uniform 300 eV radiation field and sustain it for about 10 ns.
  • loading
  • [1]
    M. K. Matzen, “Z pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519 (1997).10.1063/1.872323
    [2]
    M. G. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001
    [3]
    T. W. L. Sanford et al., “Z-pinch-generated X rays demonstrate potential for indirect-drive ICF experiments,” Phys. Rev. Lett. 83, 5511 (1999).10.1103/physrevlett.83.5511
    [4]
    C. L. Ruiz et al., “Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums,” Phys. Rev. Lett. 93, 015001 (2004).10.1103/physrevlett.93.015001
    [5]
    [6]
    W. A. Stygar et al., “Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments,” Phys. Rev. Spec. Top.–Accel. Beams 18, 110401 (2015).10.1103/PhysRevSTAB.18.110401
    [7]
    N. B. Meezan et al., “Indirect drive ignition at the National Ignition Facility,” Plasma Phys. Controlled Fusion 59, 014021 (2017).10.1088/0741-3335/59/1/014021
    [8]
    R. Betti et al., “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736
    [9]
    O. A. Hurricane et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2016).10.1038/nature13008
    [10]
    T. A. Mehlhorn et al., “Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies,” Plasma Phys. Controlled Fusion 45, A325 (2003).10.1088/0741-3335/45/12a/021
    [11]
    C. Mao et al., “Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum,” Phys. Plasmas 28, 092706 (2021).10.1063/5.0057626
    [12]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [13]
    J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998).
    [14]
    E. M. Campbell et al., “Nova experiments facility (invited),” Rev. Sci. Instrum. 57, 2101 (1986).10.1063/1.1138755
    [15]
    T. R. Boehly et al., “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2
    [16]
    W. S. Varnum et al., “Progress toward ignition with noncryogenic double-shell capsules,” Phys. Rev. Lett. 84, 5153 (2000).10.1103/physrevlett.84.5153
    [17]
    P. Amendt et al., “Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis,” Phys. Plasmas 9, 2221 (2002).10.1063/1.1459451
    [18]
    P. Amendt et al., “An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy,” Nucl. Fusion 50, 105006 (2010).10.1088/0029-5515/50/10/105006
    [19]
    D. S. Montgomery et al., “Design considerations for indirectly driven double shell capsules,” Phys. Plasmas 25, 092706 (2018).10.1063/1.5042478
    [20]
    D. C. Wilson et al., “Single and double shell ignition targets for the National Ignition Facility at 527 nm,” Phys. Plasmas 28, 052704 (2021).10.1063/5.0037338
    [21]
    T. J. Nash et al., “High-temperature dynamic hohlraums on the pulsed power driver Z,” Phys. Plasmas 6, 2023 (1999).10.1063/1.873457
    [22]
    R. Ramis et al., “MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations,” Comput. Phys. Commun. 203, 226 (2016).10.1016/j.cpc.2016.02.014
    [23]
    R. M. More et al., “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059 (1988).10.1063/1.866963
    [24]
    G. D. Tsakiris et al., “An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 38, 353 (1987).10.1016/0022-4073(87)90030-6
    [25]
    S. A. Slutz et al., “Dynamic hohlraum driven inertial fusion capsules,” Phys. Plasmas 10, 1875 (2003).10.1063/1.1565117
    [26]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publications, Oxford, 2004).
    [27]
    J. Lindl et al., “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [28]
    R. Ramis et al., “MULTI2D—A computer code for two-dimensional radiation hydrodynamics,” Comput. Phys. Commun. 180, 977 (2009).10.1016/j.cpc.2008.12.033
    [29]
    F. Wu et al., “A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations,” J. Comput. Phys. 357, 206 (2018).10.1016/j.jcp.2017.12.014
    [30]
    F. Wu et al., “Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum,” Matter Radiat. Extremes 3, 248 (2018).10.1016/j.mre.2018.06.001
    [31]
    T. R. Dittrich et al., “Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility,” Phys. Rev. Lett. 112, 055002 (2014).10.1103/PhysRevLett.112.055002
    [32]
    D. T. Casey et al., “Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive,” Phys. Rev. Lett. 115, 105001 (2015).10.1103/physrevlett.115.105001
    [33]
    L. F. Wang et al., “A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions,” Phys. Plasmas 23, 052713 (2016).10.1063/1.4952636
    [34]
    D. E. Hinkel et al., “Development of improved radiation drive environment for high foot implosions at the National Ignition Facility,” Phys. Rev. Lett. 117, 225002 (2016).10.1103/physrevlett.117.225002
    [35]
    D. J. Stark et al., “Detrimental effects and mitigation of the joint feature in double shell implosion simulations,” Phys. Plasmas 28, 052703 (2021).10.1063/5.0046435
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (410) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return