Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Xu Jingui, Zhang Dongzhou, Tkachev Sergey N., Dera Przemyslaw K.. Partnership for eXtreme Xtallography (PX2)—A state-of-the-art experimental facility for extreme-conditions crystallography: A case study of pressure-induced phase transition in natural ilvaite[J]. Matter and Radiation at Extremes, 2022, 7(2): 028401. doi: 10.1063/5.0075795
Citation: Xu Jingui, Zhang Dongzhou, Tkachev Sergey N., Dera Przemyslaw K.. Partnership for eXtreme Xtallography (PX2)—A state-of-the-art experimental facility for extreme-conditions crystallography: A case study of pressure-induced phase transition in natural ilvaite[J]. Matter and Radiation at Extremes, 2022, 7(2): 028401. doi: 10.1063/5.0075795

Partnership for eXtreme Xtallography (PX2)—A state-of-the-art experimental facility for extreme-conditions crystallography: A case study of pressure-induced phase transition in natural ilvaite

doi: 10.1063/5.0075795
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: dzhang@hawaii.edu
  • Received Date: 2021-10-18
  • Accepted Date: 2022-01-21
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • Single-crystal x-ray diffraction (SCXRD) is an important tool to study the crystal structure and phase transitions of crystalline materials at elevated pressures. The Partnership for eXtreme Xtallography (PX2) program at the GSECARS 13-BM-C beamline of the Advanced Photon Source aims to provide state-of-the-art experimental capabilities to determine the crystal structures of materials under extreme conditions using SCXRD. PX2 provides a focused x-ray beam (12 × 18 µm2) at a monochromatic energy of 28.6 keV. High-pressure SCXRD experiments are performed with a six-circle diffractometer and a Pilatus3 photon-counting detector, facilitated by a membrane system for remote pressure control and an online ruby fluorescence system for pressure determination. The efficient, high-quality crystal structure determination at PX2 is exemplified by a study of pressure-induced phase transitions in natural ilvaite [CaFe2+2Fe3+Si2O7O(OH), P21/a space group]. Two phase transitions are observed at high pressure. The SCXRD data confirm the already-known ilvaite-I (P21/a) → ilvaite-II (Pnam) transformation at 0.4(1) GPa, and, a further phase transition is found to occur at 22.8(2) GPa where ilvaite-II transforms into ilvaite-III (P21/a). The crystal structure of the ilvaite-III is solved and refined in the P21/a space group. In addition to the ilvaite-I → ilvaite-II → ilvaite-III phase transitions, two minor structural modifications are observed as discontinuities in the evolution of the FeO6 polyhedral geometries with pressure, which are likely associated with magnetic transitions.
  • loading
  • [1]
    P. Dera, K. Zhuravlev, V. Prakapenka, M. L. Rivers, G. J. Finkelstein, O. Grubor-Urosevic, O. Tschauner, S. M. Clark, and R. T. Downs, “High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software,” High Pressure Res. 33(3), 466 (2013).10.1080/08957959.2013.806504
    [2]
    B. Lavina, P. Dera, and R. T. Downs, “Modern X-ray diffraction methods in mineralogy and geosciences,” Rev. Mineral. Geochem. 78, 1 (2014).10.2138/rmg.2014.78.1
    [3]
    D. Zhang, P. K. Dera, P. J. Eng, J. E. Stubbs, J. S. Zhang, V. B. Prakapenka, and M. L. Rivers, “High pressure single crystal diffraction at PX2,” J. Visualized Exp. 119, 54660 (2017).10.3791/54660
    [4]
    L. F. Lundegaard, G. Weck, M. I. McMahon, S. Desgreniers, and P. Loubeyre, “Observation of an O8 molecular lattice in the ε phase of solid oxygen,” Nature 443(7108), 201 (2006).10.1038/nature05174
    [5]
    W. Cai, W. Lin, Y. Yan, K. P. Hilleke, J. Coles, J.-K. Bao, J. Xu, D. Zhang, D. Y. Chung, and M. G. Kanatzidis, “Pressure-induced superconductivity in the wide-band-gap semiconductor Cu2Br2Se6 with a robust framework,” Chem. Mater. 32(14), 6237 (2020).10.1021/acs.chemmater.0c02151
    [6]
    P. Dera, G. J. Finkelstein, T. S. Duffy, R. T. Downs, Y. Meng, V. Prakapenka, and S. Tkachev, “Metastable high-pressure transformations of orthoferrosilite Fs82,” Phys. Earth Planet. Inter. 221, 15 (2013).10.1016/j.pepi.2013.06.006
    [7]
    G. Thorkildsen, R. H. Mathiesen, and H. B. Larsen, “Angle calculations for a six-circle κ diffractometer,” J. Appl. Crystallogr. 32(5), 943 (1999).10.1107/s0021889899007347
    [8]
    E. Austin, “Advanced photon source,” Synchrotron Radiat. News 29(2), 29 (2016).10.1080/08940886.2016.1149431
    [9]
    M. B. Franchini, L. D. Meinert, and J. M. Vallés, “First occurrence of ilvaite in a gold skarn deposit,” Econ. Geol. 97(5), 1119 (2002).10.2113/gsecongeo.97.5.1119
    [10]
    N. Belov and V. Mokeeva, “Kristallicheskaya struktura ilvaita,” Tr. Inst. Kristallogr., Akad. Nauk SSSR 9, 47 (1954).
    [11]
    A. Beran and H. Bittner, “Untersuchungen zur kristallchemie des ilvaits,” Tschermaks Mineral. Petrogr. Mitt. 21, 11 (1974).10.1007/bf01084947
    [12]
    Y. Takéuchi and N. Haga, “Neutron diffraction study of ilvaite,” Z. Kristallogr. -Cryst. Mater. 144, 161 (1976).10.1524/zkri.1976.144.16.161
    [13]
    Y. Takéuchi, N. Haga, and M. Bunno, “X-ray study on polymorphism of ilvaite, HCaFe22+Fe3+O2[Si2O7],” Z. Kristallogr. -Cryst. Mater. 163, 267 (1983).10.1524/ZKRI.1983.163.3-4.267
    [14]
    L. Finger and R. Hazen, “Crystal structure of monoclinic ilvaite and the nature of the monoclinic-orthorhombic transition at high pressure,” Z. Kristallogr. 179, 415 (1987).10.1524/zkri.1987.179.1-4.415
    [15]
    B. Ghazi-Bayat, G. Amthauer, and H. Ahsbahs, “High pressure X-ray diffraction study of ilvaite CaFe22+Fe3+[Si2O7O(OH)],” Phys. Chem. Miner. 20(6), 402 (1993).10.1007/bf00203109
    [16]
    P. Bonazzi and L. Bindi, “Structural adjustments induced by heat treatment in ilvaite,” Am. Mineral. 84(10), 1604 (1999).10.2138/am-1999-1014
    [17]
    M. Koch-Müller, M. Mrosko, M. Gottschalk, and U. Schade, “Pressure-induced phase transitions in ilvaite studied by in situ micro-FTIR spectroscopy,” Eur. J. Mineral. 24(5), 831 (2012).10.1127/0935-1221/2012/0024-2197
    [18]
    H. Mao, J.-A. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673, https://doi.org/10.1029/jb091ib05p04673 (1986).10.1029/jb091ib05p04673
    [19]
    M. Rivers, V. B. Prakapenka, A. Kubo, C. Pullins, C. M. Holl, and S. D. Jacobsen, “The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source,” High Pressure Res. 28(3), 273 (2008).10.1080/08957950802333593
    [20]
    G. M. Sheldrick, “A short history of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr. 64(Pt. 1), 112 (2008).10.1107/S0108767307043930
    [21]
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: A complete structure solution, refinement and analysis program,” J. Appl. Crystallogr. 42(2), 339 (2009).10.1107/s0021889808042726
    [22]
    R. J. Angel, M. Alvaro, and J. Gonzalez-Platas, “EosFit7c and a Fortran module (library) for equation of state calculations,” Z. Kristallogr. -Cryst. Mater. 229(5), 405 (2014).10.1515/zkri-2013-1711
    [23]
    R. J. Angel, “Equations of state,” Rev. Mineral. Geochem. 41(1), 35 (2000).10.2138/rmg.2000.41.2
    [24]
    J. Xu, D. Zhang, D. Fan, R. T. Downs, Y. Hu, and P. Dera, “Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones,” J. Geophys. Res.: Solid Earth 122, 142, https://doi.org/10.1002/2016jb013502 (2017).10.1002/2016jb013502
    [25]
    K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44(6), 1272 (2011).10.1107/s0021889811038970
    [26]
    W. Baur, “The geometry of polyhedral distortions. Predictive relationships for the phosphate group,” Acta Crystallogr., Sect. B: Struct. Sci. 30, 1195 (1974).10.1107/s0567740874004560
    [27]
    B. Evans and G. Amthauer, “The electronic structure of ilvaite and the pressure and temperature dependence of its 57Fe Mössbauer spectrum,” J. Phys. Chem. Solids 41(9), 985 (1980).10.1016/0022-3697(80)90106-7
    [28]
    J. Xu, D. Zhang, D. Fan, J. S. Zhang, Y. Hu, X. Guo, P. Dera, and W. Zhou, “Phase transitions in orthoenstatite and subduction zone dynamics: Effects of water and transition metal ions,” J. Geophys. Res.: Solid Earth 123(4), 2723, https://doi.org/10.1002/2017jb015169 (2018).10.1002/2017jb015169
    [29]
    J. Xu, D. Fan, D. Zhang, X. Guo, W. Zhou, and P. K. Dera, “Phase transition of enstatite-ferrosilite solid solutions at high pressure and high temperature: Constraints on metastable orthopyroxene in cold subduction,” Geophys. Res. Lett. 47(12), e2020GL087363, https://doi.org/10.1029/2020gl087363 (2020).10.1029/2020gl087363
    [30]
    J. S. Zhang, P. Dera, and J. D. Bass, “A new high-pressure phase transition in natural Fe-bearing orthoenstatite,” Am. Mineral. 97(7), 1070 (2012).10.2138/am.2012.4072
    [31]
    G. J. Finkelstein, P. K. Dera, and T. S. Duffy, “Phase transitions in orthopyroxene (En90) to 49 GPa from single-crystal X-ray diffraction,” Phys. Earth Planet. Inter. 244, 78 (2015).10.1016/j.pepi.2014.10.009
    [32]
    K. Xuemin, S. Ghose, and B. D. Dunlap, “Phase transitions in ilvaite, a mixed-valence iron silicate I. A 57Fe Mössbauer study of magnetic order and spin frustration,” Phys. Chem. Miner. 16(1), 55 (1988).10.1007/bf00201330
    [33]
    T. Yamanaka and Y. Takéuchi, “Mössbauer spectra and magnetic features of ilvaites,” Phys. Chem. Miner. 4, 149 (1979).10.1007/bf00307559
    [34]
    S. Ghose, A. Hewat, and M. Marezio, “A neutron powder diffraction study of the crystal and magnetic structures of ilvaite from 305 K to 5 K—A mixed valence iron silicate with an electronic transition,” Phys. Chem. Miner. 11, 67 (1984).10.1007/bf00308007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (175) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return