Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Hirao Naohisa, Akahama Yuichi, Ohishi Yasuo. Equations of state of iron and nickel to the pressure at the center of the Earth[J]. Matter and Radiation at Extremes, 2022, 7(3): 038403. doi: 10.1063/5.0074340
Citation: Hirao Naohisa, Akahama Yuichi, Ohishi Yasuo. Equations of state of iron and nickel to the pressure at the center of the Earth[J]. Matter and Radiation at Extremes, 2022, 7(3): 038403. doi: 10.1063/5.0074340

Equations of state of iron and nickel to the pressure at the center of the Earth

doi: 10.1063/5.0074340
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: akahama@sci.u-hyogo.ac.jp
  • Received Date: 2021-10-07
  • Accepted Date: 2022-03-08
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • Synchrotron radiation x-ray diffraction investigations of iron (Fe) and nickel (Ni) are conducted at pressures up to 354 and 368 GPa, respectively, and the equations of state (EOSs) at 298 K for the two elements are obtained for data extending to pressures as high as those at the center of the Earth, using the latest Pt-EOS pressure scale. From a least-squares fit to the Vinet equation using the observed pressure–volume data, the isothermal bulk modulus K0 and its pressure derivative K0 are estimated to be 159.27(99) GPa and 5.86(4) for hcp-Fe, and 173.5(1.4) GPa and 5.55(5) for Ni. By comparing the present EOSs and extrapolated EOSs reported in the literature for Fe and Ni, the volumes of Fe and Ni at 365 GPa are found to be 2.3% and 1.5% larger than those estimated from extrapolated EOSs in previous studies, respectively. It is concluded that these discrepancies are due to the pressure scale. The present results suggest that the densities of Fe and Ni at a pressure of 365 GPa corresponding to the center of the Earth are 2.3% and 1.5%, respectively, lower than previously thought.
  • loading
  • [1]
    Y. Akahama, N. Hirao, Y. Ohishi, and A. K. Singh, “Equation of state of bcc-Mo by static volume compression to 410 GPa,” J. Appl. Phys. 116, 223504 (2014).10.1063/1.4903940
    [2]
    A. P. Jephcoat, H. K. Mao, and P. M. Bell, “Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media,” J. Geophys. Res. 91, 4677, https://doi.org/10.1029/JB091iB05p04677 (1986).10.1029/JB091iB05p04677
    [3]
    H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, “Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for composition of the core,” J. Geophys. Res. 95, 21737, https://doi.org/10.1029/JB095iB13p21737 (1990).10.1029/JB095iB13p21737
    [4]
    L. S. Dubrovinsky, S. K. Saxena, F. Tutti, S. Rekhi, and T. LeBehan, “In situ X-ray study of thermal expansion and phase transition of iron at multimegabar pressure,” Phys. Rev. Lett. 84, 1720 (2000).10.1103/PhysRevLett.84.1720
    [5]
    A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P. I. Dorogokupets, and M. Torrent, “Quasihydrostatic equation of state of iron above 2 Mbar,” Phys. Rev. Lett. 97, 215504 (2006).10.1103/PhysRevLett.97.215504
    [6]
    A. Dewaele, M. Torrent, P. Loubeyre, and M. Mezouar, “Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations,” Phys. Rev. B 78, 104102 (2008).10.1103/PhysRevB.78.104102
    [7]
    Y. Kuwayama, K. Hirose, N. Sata, and Y. Ohishi, “Phase relations of iron and iron–nickel alloys up to 300 GPa: Implications for composition and structure of the Earth’s inner core,” Earth Planet. Sci. Lett. 273, 379 (2008).10.1016/j.epsl.2008.07.001
    [8]
    T. Sakai, S. Takahashi, N. Nishitani, I. Mashino, E. Ohtani, and N. Hirao, “Equation of state of pure iron and Fe0.9Ni0.1 alloy up to 3 Mbar,” Phys. Earth Planet. Inter 228, 114 (2014).10.1016/j.pepi.2013.12.010
    [9]
    Y. Fei, C. Murphy, Y. Shibazaki, A. Shahar, and H. Huang, “Thermal equation of state of hcp-iron: Constraint on the density deficit of Earth’s solid inner core,” Geophys. Res. Lett. 43, 6837, https://doi.org/10.1002/2016gl069456 (2016).10.1002/2016gl069456
    [10]
    R. A. Morrison, J. M. Jackson, W. Sturhahn, D. Zhang, and E. Greenberg, “Equations of state and anisotropy of Fe-Ni-Si alloys,” J. Geophys. Res. 123, 4647, https://doi.org/10.1029/2017JB015343 (2018).10.1029/2017JB015343
    [11]
    E. Edmund, D. Antonangeli, F. Decremps, F. Miozzi, G. Morard, E. Boulard, A. N. Clark, S. Ayrinhac, M. Gauthier, M. Morand, and M. Mezouar, “Velocity-density systematics of Fe-5wt%Si: Constraints on Si content in the Earth’s inner core,” J. Geophys. Res. 124, 3436, https://doi.org/10.1029/2018JB016904 (2019).10.1029/2018JB016904
    [12]
    F. Miozzi, J. Matas, N. Guignot, J. Badro, J. Siebert, and G. Fiquet, “A new reference for the thermal equation of state of iron,” Minerals 10, 100 (2020).10.3390/min10020100
    [13]
    E. Edmund, F. Miozzi, G. Morard, E. Boulard, A. Clark, F. Decremps, G. Garbarino, V. Svitlyk, M. Mezouar, and D. Antonangeli, “Axial compressibility and thermal equation of state of hcp Fe–5wt% Ni–5wt%Si,” Minerals 10, 98 (2020).10.3390/min10020098
    [14]
    G. Kennedy and R. Keeler, in American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 4, pp. 38–105.
    [15]
    M. Yamamoto, “On elastic constants of nickel crystals,” Phys. Rev. 77, 566 (1950).10.1103/PhysRev.77.566
    [16]
    I. Sergueev, L. Dubrovinsky, M. Ekholm, O. Y. Vekilova, A. I. Chumakov, M. Zając, V. Potapkin, I. Kantor, S. Bornemann, H. Ebert, S. I. Simak, I. A. Abrikosov, and R. Rüffer, “Hyperfine splitting and room-temperature ferromagnetism of Ni at multimegabar pressure,” Phys. Rev. Lett. 111, 157601 (2013).10.1103/PhysRevLett.111.157601
    [17]
    N. Ishimatsu, H. Maruyama, N. Kawamura, M. Suzuki, Y. Ohishi, and O. Shimomura, “Stability of ferromagnetism in Fe, Co, and Ni metals under high pressure,” J. Phys. Soc. Jpn. 76, 064703 (2007).10.1143/JPSJ.76.064703
    [18]
    R. Torchio, Y. O. Kvashnin, S. Pascarelli, O. Mathon, C. Marini, L. Genovese, P. Bruno, G. Garbarino, A. Dewaele, F. Occelli, and P. Loubeyre, “X-ray magnetic circular dichroism measurements in Ni up to 200 GPa: Resistant ferromagnetism,” Phys. Rev. Lett. 107, 237202 (2011).10.1103/PhysRevLett.107.237202
    [19]
    D. E. Fratanduono, M. Millot, D. G. Braun, S. J. Ali, A. Fernandez-Pañella, C. T. Seagle, J.-P. Davis, J. L. Brown, Y. Akahama, R. G. Kraus, M. C. Marshall, R. F. Smith, E. F. O’Bannon III, J. M. McNaney, and J. H. Eggert, “Establishing gold and platinum standards to 1 terapascal using shockless compression,” Science 372, 1063 (2021).10.1126/science.abh0364
    [20]
    N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, “The equation of state of platinum to 660 GPa (6.6 Mbar),” J. Appl. Phys. 66, 2962 (1989).10.1063/1.344177
    [21]
    Y. Akahama and H. Kawamura, “Recent advances in ultra-high pressure generation technology using diamond anvil cell: Challenge to the Frontier of static high-pressure generation,” Rev. High Pressure Sci. Technol. 19, 248 (2009) (in Japanese).10.4131/jshpreview.19.248
    [22]
    Y. Ohishi, N. Hirao, N. Sata, K. Hirose, and M. Takata, “Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8,” High Pressure Res. 28, 163 (2008).10.1080/08957950802208910
    [23]
    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani, and Y. Ohishi, “New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8,” Matter Radiat. Extremes 5, 018403 (2020).10.1063/1.5126038
    [24]
    M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita, and T. Ishikawa, “High-energy X-ray diffraction beamline: BL04B2 at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 663 (2001).10.1016/S0168-9002(01)00441-7
    [25]
    A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Pressure Res. 14, 235 (1996).10.1080/08957959608201408
    [26]
    Y. Seto, D. Nishio-Hamane, T. Nagai, and N. Sata, “Development of a software suite on X-ray diffraction experiments,” Rev. High Pressure Sci. Technol. 20, 269 (2010) (in Japanese).10.4131/jshpreview.20.269
    [27]
    A. Dewaele, P. Loubeyre, and M. Mezouar, “Equations of state of six metals above 94 GPa,” Phys. Rev. B 70, 094112 (2004).10.1103/PhysRevB.70.094112
    [28]
    Y. Akahama, H. Kawamura, and A. K. Singh, “Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa,” J. Appl. Phys. 92, 5892 (2002).10.1063/1.1515378
    [29]
    A. Dewaele, C. Denoual, S. Anzellini, F. Occelli, M. Mezouar, P. Cordier, S. Merkel, M. Véron, and E. Rausch, “Mechanism of the α − ε phase transformation in iron,” Phys. Rev. B 91, 174105 (2015).10.1103/PhysRevB.91.174105
    [30]
    P. Vinet, J. Ferrante, J. H. Rose, and J. R. Smith, “Compressibility of solids,” J. Geophys. Res. 92, 9319, https://doi.org/10.1029/JB092iB09p09319 (1987).10.1029/JB092iB09p09319
    [31]
    R. J. Angel, “Equation of state,” in High-Pressure and High-Temperature Crystal Chemistry, Reviews in Mineralogy and Geochemistry, edited by R. M. Hazen and R. T. Downs (Mineralogical Society of American and Geochemical Society, Washington, DC, 2000), Vol. 41, pp. 35–60.
    [32]
    F. Izumi and T. Ikeda, “A Rietveld-analysis program RIETAN-98. and its applications to zeolites,” Mater. Sci. Forum 321–324, 198 (2000).10.4028/www.scientific.net/msf.321-324.198
    [33]
    A. K. Singh, “The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device,” J. Appl. Phys. 73, 4278 (1993).10.1063/1.352809
    [34]
    A. K. Singh, C. Balasingh, H.-k. Mao, R. J. Hemley, and J. Shu, “Analysis of lattice strains measured under nonhydrostatic pressure,” J. Appl. Phys. 83, 7567 (1998).10.1063/1.367872
    [35]
    E. Menéndez-Proupin and A. K. Singh, “Ab initio calculations of elastic properties of compressed Pt,” Phys. Rev. B 76, 054117 (2007).10.1103/PhysRevB.76.054117
    [36]
    T. Çain and B. M. Pettitt, “Elastic constants of nickel: Variations with respect to temperature and pressure,” Phys. Rev. B 39, 12484 (1989).10.1103/PhysRevB.39.12484
    [37]
    A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth model,” Phys. Earth Planet. Inter. 25, 297 (1981).10.1016/0031-9201(81)90046-7
    [38]
    Y. Akahama, Y. Fujimoto, T. Terai, T. Fukuda, S. Kawaguchi, N. Hirao, Y. Ohishi, and T. Kakeshita, “Pressure–composition phase diagram of Fe–Ni alloy,” Mater. Trans. 61, 1058 (2020).10.2320/matertrans.MT-M2020047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (215) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return