Citation: | Molina Jacob M., White T. G.. A molecular dynamics study of laser-excited gold[J]. Matter and Radiation at Extremes, 2022, 7(3): 036901. doi: 10.1063/5.0073217 |
[1] |
K. H. Bennemann, “Ultrafast dynamics in solids,” J. Phys.: Condens. Matter 16, R995 (2004).10.1088/0953-8984/16/30/r01
|
[2] |
E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).10.1016/j.physrep.2011.07.002
|
[3] |
S. Ichimaru, Statistical Plasma Physics, Volume II: Condensed Plasmas (CRC Press, Boca Raton, FL, 2004).
|
[4] |
B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).10.1016/j.apsusc.2007.01.045
|
[5] |
K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3, e149 (2014).10.1038/lsa.2014.30
|
[6] |
X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS),” Sci. Rep. 6, 35035 (2016).10.1038/srep35035
|
[7] |
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).10.1038/nphoton.2008.47
|
[8] |
S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231 (2010).10.1126/science.1185634
|
[9] |
M. Mo, S. Murphy, Z. Chen, P. Fossati, R. Li, Y. Wang, X. Wang, and S. Glenzer, “Visualization of ultrafast melting initiated from radiation-driven defects in solids,” Sci. Adv. 5, eaaw0392 (2019).10.1126/sciadv.aaw0392
|
[10] |
M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte, J. K. Baldwin, L. B. Fletcher, J. B. Kim, A. Ng, R. Redmer, A. H. Reid, P. Shekhar, X. Z. Shen, M. Shen, K. Sokolowski-Tinten, Y. Y. Tsui, Y. Q. Wang, Q. Zheng, X. J. Wang, and S. H. Glenzer, “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
|
[11] |
S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, “Structural dynamics of laser-irradiated gold nanofilms,” Phys. Rev. B 88, 184101 (2013).10.1103/physrevb.88.184101
|
[12] |
R. Ernstorfer, M. Harb, C. T. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, “The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold,” Science 323, 1033–1037 (2009).10.1126/science.1162697
|
[13] |
J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).10.1007/s003400050189
|
[14] |
C. Guo and A. J. Taylor, “Nonthermal component in heat-induced structural deformation and phase transition in gold,” Phys. Rev. B 62, R11921(R) (2000).10.1103/physrevb.62.r11921
|
[15] |
B. I. Cho, T. Ogitsu, K. Engelhorn, A. A. Correa, Y. Ping, J. W. Lee, L. J. Bae, D. Prendergast, R. W. Falcone, and P. A. Heimann, “Measurement of electron-ion relaxation in warm dense copper,” Sci. Rep. 6, 18843 (2016).10.1038/srep18843
|
[16] |
N. Jourdain, L. Lecherbourg, V. Recoules, P. Renaudin, and F. Dorchies, “Electron-ion thermal equilibration dynamics in femtosecond heated warm dense copper,” Phys. Rev. B 97, 075148 (2018).10.1103/physrevb.97.075148
|
[17] |
Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid, Y. Y. Tsui, V. Recoules, and A. Ng, “Evolution of ac conductivity in nonequilibrium warm dense gold,” Phys. Rev. Lett. 110, 135001 (2013).10.1103/physrevlett.110.135001
|
[18] |
L. B. Fletcher, H. J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D. A. Chapman, D. O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R. W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J. B. Hastings, and S. H. Glenzer, “Ultrabright X-ray laser scattering for dynamic warm dense matter physics,” Nat. Photonics 9, 274–279 (2015).10.1038/nphoton.2015.41
|
[19] |
T. G. White, N. J. Hartley, B. Borm, B. J. B. Crowley, J. W. O. Harris, D. C. Hochhaus, T. Kaempfer, K. Li, P. Neumayer, L. K. Pattison, F. Pfeifer, S. Richardson, A. P. L. Robinson, I. Uschmann, and G. Gregori, “Electron-ion equilibration in ultrafast heated graphite,” Phys. Rev. Lett. 112, 145005 (2014).10.1103/physrevlett.112.145005
|
[20] |
T. G. White, J. Vorberger, C. R. D. Brown, B. J. B. Crowley, P. Davis, S. H. Glenzer, J. W. O. Harris, D. C. Hochhaus, S. Le Pape, T. Ma, C. D. Murphy, P. Neumayer, L. K. Pattison, S. Richardson, D. O. Gericke, and G. Gregori, “Observation of inhibited electron-ion coupling in strongly heated graphite,” Sci. Rep. 2, 889 (2012).10.1038/srep00889
|
[21] |
B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, Z. Chen, S. E. Kirkwood, V. Sametoglu, M. Reid, and Y. Y. Tsui, “Ab initio model of optical properties of two-temperature warm dense matter,” Phys. Rev. B 90, 035121 (2014).10.1103/physrevb.90.035121
|
[22] |
Z. Lin, L. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).10.1103/physrevb.77.075133
|
[23] |
N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102, 064302 (2020).10.1103/physrevb.102.064302
|
[24] |
A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater, “Ab initio phonon coupling and optical response of hot electrons in plasmonic metals,” Phys. Rev. B 94, 075120 (2016).10.1103/physrevb.94.075120
|
[25] |
N. A. Smirnov, “Copper, gold, and platinum under femtosecond irradiation: Results of first-principles calculations,” Phys. Rev. B 101, 094103 (2020).10.1103/physrevb.101.094103
|
[26] |
K. P. Migdal, D. K. Il’nitsky, Y. V. Petrov, and N. A. Inogamov, “Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold,” J. Phys.: Conf. Ser. 653, 012086 (2015).10.1088/1742-6596/653/1/012086
|
[27] |
X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).10.1103/physrevb.50.8016
|
[28] |
D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Springer US, Boston, MA, 2015).
|
[29] |
Y. V. Petrov, N. A. Inogamov, and K. P. Migdal, “Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem,” JETP Lett. 97, 20–27 (2013).10.1134/s0021364013010098
|
[30] |
V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, “Effect of intense laser irradiation on the lattice stability of semiconductors and metals,” Phys. Rev. Lett. 96, 055503 (2006).10.1103/PhysRevLett.96.055503
|
[31] |
Y. Giret, N. Naruse, S. L. Daraszewicz, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, “Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data,” Appl. Phys. Lett. 103, 253107 (2013).10.1063/1.4847695
|
[32] |
Z. Chen, V. Sametoglu, Y. Y. Tsui, T. Ao, and A. Ng, “Flux-limited nonequilibrium electron energy transport in warm dense gold,” Phys. Rev. Lett. 108, 165001 (2012).10.1103/physrevlett.108.165001
|
[33] |
A. Tamm, M. Caro, A. Caro, G. Samolyuk, M. Klintenberg, and A. A. Correa, “Langevin dynamics with spatial correlations as a model for electron-phonon coupling,” Phys. Rev. Lett. 120, 185501 (2018).10.1103/physrevlett.120.185501
|
[34] |
H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, “Highly optimized embedded-atom-method potentials for fourteen fcc metals,” Phys. Rev. B 83, 134118 (2011).10.1103/physrevb.83.134118
|
[35] |
Z. Chen, M. Mo, L. Soulard, V. Recoules, P. Hering, Y. Y. Tsui, S. H. Glenzer, and A. Ng, “Interatomic potential in the nonequilibrium warm dense matter regime,” Phys. Rev. Lett. 121, 075002 (2018).10.1103/PhysRevLett.121.075002
|
[36] |
Q. Zeng and J. Dai, “Structural transition dynamics of the formation of warm dense gold: From an atomic scale view,” Sci. China: Phys., Mech. Astron. 63, 263011 (2020).10.1007/s11433-019-1466-2
|
[37] |
S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).10.1006/jcph.1995.1039
|
[38] |
A. M. Rutherford and D. M. Duffy, “The effect of electron–ion interactions on radiation damage simulations,” J. Phys.: Condens. Matter 19, 496201 (2007).10.1088/0953-8984/19/49/496201
|
[39] |
D. M. Duffy and A. M. Rutherford, “Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations,” J. Phys.: Condens. Matter 19, 016207 (2006).10.1088/0953-8984/19/1/016207
|
[40] |
Z. Chen, Y. Y. Tsui, M. Z. Mo, R. Fedosejevs, T. Ozaki, V. Recoules, P. A. Sterne, and A. Ng, “Electron kinetics induced by ultrafast photoexcitation of warm dense matter in a 30-nm-thick foil,” Phys. Rev. Lett. 127, 097403 (2021).10.1103/PhysRevLett.127.097403
|
[41] |
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81, 3684 (1984).10.1063/1.448118
|
[42] |
J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).10.1016/S0301-0104(99)00330-4
|
[43] |
T. Ogitsu, Y. Ping, A. Correa, B.-i. Cho, P. Heimann, E. Schwegler, J. Cao, and G. W. Collins, “Ballistic electron transport in non-equilibrium warm dense gold,” High Energy Density Phys. 8, 303–306 (2012).10.1016/j.hedp.2012.01.002
|
[44] |
Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and V. V. Zhakhovsky, “Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse,” Appl. Phys. B 119, 401–411 (2015).10.1007/s00340-015-6048-6
|
[45] | |
[46] |
T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions,” Phys. Rev. B 17, 1302 (1978).10.1103/physrevb.17.1302
|
[47] |
P. Mabey, S. Richardson, T. G. White, L. B. Fletcher, S. H. Glenzer, N. J. Hartley, J. Vorberger, D. O. Gericke, and G. Gregori, “A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics,” Nat. Commun. 8, 14125 (2017).10.1038/ncomms14125
|
[48] |
A. Medved, R. Davis, and P. A. Vasquez, “Understanding fluid dynamics from Langevin and Fokker–Planck equations,” Fluids 5, 40 (2020).10.3390/fluids5010040
|
[49] |
G. E. Norman, S. V. Starikov, and V. V. Stegailov, “Atomistic simulation of laser ablation of gold: Effect of pressure relaxation,” J. Exp. Theor. Phys. 114, 792–800 (2012).10.1134/s1063776112040115
|
[50] |
E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, London, England, 1998).
|
[51] |
Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermal Expansion: Metallic Elements and Alloys (Plenum, New York, 1975).
|
[52] |
F. C. Campbell, Elements of Metallurgy and Engineering Alloys (ASM World Headquarters: ASM International, 2008).
|
[53] |
E. A. Brandes, Smithell’s Metal Reference Book (Butterworths, London, England, 1983).
|
[54] |
V. Syneček, H. Chessin, and M. Simerska, “The temperature dependence of lattice vibrations in gold from X-ray diffraction measurements,” Acta Crystallogr., Sect. A: Found. Adv. A26, 108–113 (1970).10.1107/S0567739470000141
|
[55] |
B. E. Warren, X-Ray Diffraction (Dover Publications, Mineola, NY, 1990).
|
[56] |
S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
|
[57] |
T. G. White, P. Mabey, D. O. Gericke, N. J. Hartley, H. W. Doyle, D. McGonegle, D. S. Rackstraw, A. Higginbotham, and G. Gregori, “Electron-phonon equilibration in laser-heated gold films,” Phys. Rev. B 90, 014305 (2014).10.1103/physrevb.90.014305
|
[58] |
V. V. Stegailov and P. A. Zhilyaev, “Warm dense gold: Effective ion–ion interaction and ionisation,” Mol. Phys. 114, 509–518 (2016).10.1080/00268976.2015.1105390
|
[59] |
J. Li, J. Zhou, T. Ogitsu, Y. Ping, W. D. Ware, and J. Cao, “Probing the warm dense copper nano-foil with ultrafast electron shadow imaging and deflectometry,” High Energy Density Phys. 8, 298–302 (2012).10.1016/j.hedp.2012.05.002
|
[60] |
D. M. Riffe, X. Y. Wang, M. C. Downer, D. L. Fisher, T. Tajima, J. L. Erskine, and R. M. More, “Femtosecond thermionic emission from metals in the space-charge-limited regime,” J. Opt. Soc. Am. B 10, 1424–1435 (1993).10.1364/josab.10.001424
|
[61] |
Y. Ping, A. A. Correa, T. Ogitsu, E. Draeger, E. Schwegler, T. Ao, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, D. Hanson, I. Koslow, D. Prendergast, G. Collins, and A. Ng, “Warm dense matter created by isochoric laser heating,” High Energy Density Phys. 6, 246–257 (2010).10.1016/j.hedp.2009.12.009
|
[62] |
M. Vos, R. P. McEachran, E. Weigold, and R. A. Bonham, “Elastic electron scattering cross sections at high momentum transfer,” Nucl. Instrum. Methods Phys. Res., Sect. B 300, 62–67 (2013).10.1016/j.nimb.2013.01.043
|
[63] |
P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O’Keefe, and B. T. M. Willis, “Intensity of diffracted intensities,” in International Tables for Crystallography Volume C (Wiley, 2006), pp. 554–595.
|
[64] |
L. Reimer and H. Kohl, Transmission Electron Microscopy: Physics of Image Formation (Springer US, Boston, MA, 2008).
|
[65] |
R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer US, Boston, MA, 2014).
|
[66] |
T. Ida, M. Ando, and H. Toraya, “Extended pseudo-Voigt function for approximating the Voigt profile,” J. Appl. Crystallogr. 33, 1311–1316 (2000).10.1107/s0021889800010219
|
[67] |
Z. Lin and L. V. Zhigilei, “Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study,” Phys. Rev. B 73, 184113 (2006).10.1103/physrevb.73.184113
|
[68] |
X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, “Atomic scale structure of sputtered metal multilayers,” Acta Mater. 49, 4005–4015 (2001).10.1016/s1359-6454(01)00287-7
|
[69] |
A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).10.1088/0965-0393/18/1/015012
|
[70] |
P. M. Larsen, S. Schmidt, and J. Schiøtz, “Robust structural identification via polyhedral template matching,” Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).10.1088/0965-0393/24/5/055007
|
[71] |
Z. Lin, E. Leveugle, E. M. Bringa, and L. V. Zhigilei, “Molecular dynamics simulation of laser melting of nanocrystalline Au,” J. Phys. Chem. C 114, 5686–5699 (2010).10.1021/jp909328q
|
![]() |
![]() |