Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Molina Jacob M., White T. G.. A molecular dynamics study of laser-excited gold[J]. Matter and Radiation at Extremes, 2022, 7(3): 036901. doi: 10.1063/5.0073217
Citation: Molina Jacob M., White T. G.. A molecular dynamics study of laser-excited gold[J]. Matter and Radiation at Extremes, 2022, 7(3): 036901. doi: 10.1063/5.0073217

A molecular dynamics study of laser-excited gold

doi: 10.1063/5.0073217
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jmmolina@nevada.unr.edu
  • Received Date: 2021-09-28
  • Accepted Date: 2022-03-03
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • The structural evolution of laser-excited systems of gold has previously been measured through ultrafast MeV electron diffraction. However, there has been a long-standing inability of atomistic simulations to provide a consistent picture of the melting process, leading to large discrepancies between the predicted threshold energy density for complete melting, as well as the transition between heterogeneous and homogeneous melting. We make use of two-temperature classical molecular dynamics simulations utilizing three highly successful interatomic potentials and reproduce electron diffraction data presented by Mo et al. [Science 360 , 1451–1455 (2018)]. We recreate the experimental electron diffraction data, employing both a constant and temperature-dependent electron–ion equilibration rate. In all cases, we are able to match time-resolved electron diffraction data, and find consistency between atomistic simulations and experiments, only by allowing laser energy to be transported away from the interaction region. This additional energy-loss pathway, which scales strongly with laser fluence, we attribute to hot electrons leaving the target on a timescale commensurate with melting.
  • loading
  • [1]
    K. H. Bennemann, “Ultrafast dynamics in solids,” J. Phys.: Condens. Matter 16, R995 (2004).10.1088/0953-8984/16/30/r01
    [2]
    E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).10.1016/j.physrep.2011.07.002
    [3]
    S. Ichimaru, Statistical Plasma Physics, Volume II: Condensed Plasmas (CRC Press, Boca Raton, FL, 2004).
    [4]
    B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253, 6347–6352 (2007).10.1016/j.apsusc.2007.01.045
    [5]
    K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3, e149 (2014).10.1038/lsa.2014.30
    [6]
    X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS),” Sci. Rep. 6, 35035 (2016).10.1038/srep35035
    [7]
    R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).10.1038/nphoton.2008.47
    [8]
    S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231 (2010).10.1126/science.1185634
    [9]
    M. Mo, S. Murphy, Z. Chen, P. Fossati, R. Li, Y. Wang, X. Wang, and S. Glenzer, “Visualization of ultrafast melting initiated from radiation-driven defects in solids,” Sci. Adv. 5, eaaw0392 (2019).10.1126/sciadv.aaw0392
    [10]
    M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte, J. K. Baldwin, L. B. Fletcher, J. B. Kim, A. Ng, R. Redmer, A. H. Reid, P. Shekhar, X. Z. Shen, M. Shen, K. Sokolowski-Tinten, Y. Y. Tsui, Y. Q. Wang, Q. Zheng, X. J. Wang, and S. H. Glenzer, “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
    [11]
    S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, “Structural dynamics of laser-irradiated gold nanofilms,” Phys. Rev. B 88, 184101 (2013).10.1103/physrevb.88.184101
    [12]
    R. Ernstorfer, M. Harb, C. T. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, “The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold,” Science 323, 1033–1037 (2009).10.1126/science.1162697
    [13]
    J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, “Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness,” Appl. Phys. B 64, 387–390 (1997).10.1007/s003400050189
    [14]
    C. Guo and A. J. Taylor, “Nonthermal component in heat-induced structural deformation and phase transition in gold,” Phys. Rev. B 62, R11921(R) (2000).10.1103/physrevb.62.r11921
    [15]
    B. I. Cho, T. Ogitsu, K. Engelhorn, A. A. Correa, Y. Ping, J. W. Lee, L. J. Bae, D. Prendergast, R. W. Falcone, and P. A. Heimann, “Measurement of electron-ion relaxation in warm dense copper,” Sci. Rep. 6, 18843 (2016).10.1038/srep18843
    [16]
    N. Jourdain, L. Lecherbourg, V. Recoules, P. Renaudin, and F. Dorchies, “Electron-ion thermal equilibration dynamics in femtosecond heated warm dense copper,” Phys. Rev. B 97, 075148 (2018).10.1103/physrevb.97.075148
    [17]
    Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid, Y. Y. Tsui, V. Recoules, and A. Ng, “Evolution of ac conductivity in nonequilibrium warm dense gold,” Phys. Rev. Lett. 110, 135001 (2013).10.1103/physrevlett.110.135001
    [18]
    L. B. Fletcher, H. J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D. A. Chapman, D. O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R. W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J. B. Hastings, and S. H. Glenzer, “Ultrabright X-ray laser scattering for dynamic warm dense matter physics,” Nat. Photonics 9, 274–279 (2015).10.1038/nphoton.2015.41
    [19]
    T. G. White, N. J. Hartley, B. Borm, B. J. B. Crowley, J. W. O. Harris, D. C. Hochhaus, T. Kaempfer, K. Li, P. Neumayer, L. K. Pattison, F. Pfeifer, S. Richardson, A. P. L. Robinson, I. Uschmann, and G. Gregori, “Electron-ion equilibration in ultrafast heated graphite,” Phys. Rev. Lett. 112, 145005 (2014).10.1103/physrevlett.112.145005
    [20]
    T. G. White, J. Vorberger, C. R. D. Brown, B. J. B. Crowley, P. Davis, S. H. Glenzer, J. W. O. Harris, D. C. Hochhaus, S. Le Pape, T. Ma, C. D. Murphy, P. Neumayer, L. K. Pattison, S. Richardson, D. O. Gericke, and G. Gregori, “Observation of inhibited electron-ion coupling in strongly heated graphite,” Sci. Rep. 2, 889 (2012).10.1038/srep00889
    [21]
    B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, Z. Chen, S. E. Kirkwood, V. Sametoglu, M. Reid, and Y. Y. Tsui, “Ab initio model of optical properties of two-temperature warm dense matter,” Phys. Rev. B 90, 035121 (2014).10.1103/physrevb.90.035121
    [22]
    Z. Lin, L. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008).10.1103/physrevb.77.075133
    [23]
    N. Medvedev and I. Milov, “Electron-phonon coupling in metals at high electronic temperatures,” Phys. Rev. B 102, 064302 (2020).10.1103/physrevb.102.064302
    [24]
    A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater, “Ab initio phonon coupling and optical response of hot electrons in plasmonic metals,” Phys. Rev. B 94, 075120 (2016).10.1103/physrevb.94.075120
    [25]
    N. A. Smirnov, “Copper, gold, and platinum under femtosecond irradiation: Results of first-principles calculations,” Phys. Rev. B 101, 094103 (2020).10.1103/physrevb.101.094103
    [26]
    K. P. Migdal, D. K. Il’nitsky, Y. V. Petrov, and N. A. Inogamov, “Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold,” J. Phys.: Conf. Ser. 653, 012086 (2015).10.1088/1742-6596/653/1/012086
    [27]
    X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).10.1103/physrevb.50.8016
    [28]
    D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Springer US, Boston, MA, 2015).
    [29]
    Y. V. Petrov, N. A. Inogamov, and K. P. Migdal, “Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem,” JETP Lett. 97, 20–27 (2013).10.1134/s0021364013010098
    [30]
    V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, “Effect of intense laser irradiation on the lattice stability of semiconductors and metals,” Phys. Rev. Lett. 96, 055503 (2006).10.1103/PhysRevLett.96.055503
    [31]
    Y. Giret, N. Naruse, S. L. Daraszewicz, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, and K. Tanimura, “Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data,” Appl. Phys. Lett. 103, 253107 (2013).10.1063/1.4847695
    [32]
    Z. Chen, V. Sametoglu, Y. Y. Tsui, T. Ao, and A. Ng, “Flux-limited nonequilibrium electron energy transport in warm dense gold,” Phys. Rev. Lett. 108, 165001 (2012).10.1103/physrevlett.108.165001
    [33]
    A. Tamm, M. Caro, A. Caro, G. Samolyuk, M. Klintenberg, and A. A. Correa, “Langevin dynamics with spatial correlations as a model for electron-phonon coupling,” Phys. Rev. Lett. 120, 185501 (2018).10.1103/physrevlett.120.185501
    [34]
    H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, “Highly optimized embedded-atom-method potentials for fourteen fcc metals,” Phys. Rev. B 83, 134118 (2011).10.1103/physrevb.83.134118
    [35]
    Z. Chen, M. Mo, L. Soulard, V. Recoules, P. Hering, Y. Y. Tsui, S. H. Glenzer, and A. Ng, “Interatomic potential in the nonequilibrium warm dense matter regime,” Phys. Rev. Lett. 121, 075002 (2018).10.1103/PhysRevLett.121.075002
    [36]
    Q. Zeng and J. Dai, “Structural transition dynamics of the formation of warm dense gold: From an atomic scale view,” Sci. China: Phys., Mech. Astron. 63, 263011 (2020).10.1007/s11433-019-1466-2
    [37]
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).10.1006/jcph.1995.1039
    [38]
    A. M. Rutherford and D. M. Duffy, “The effect of electron–ion interactions on radiation damage simulations,” J. Phys.: Condens. Matter 19, 496201 (2007).10.1088/0953-8984/19/49/496201
    [39]
    D. M. Duffy and A. M. Rutherford, “Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations,” J. Phys.: Condens. Matter 19, 016207 (2006).10.1088/0953-8984/19/1/016207
    [40]
    Z. Chen, Y. Y. Tsui, M. Z. Mo, R. Fedosejevs, T. Ozaki, V. Recoules, P. A. Sterne, and A. Ng, “Electron kinetics induced by ultrafast photoexcitation of warm dense matter in a 30-nm-thick foil,” Phys. Rev. Lett. 127, 097403 (2021).10.1103/PhysRevLett.127.097403
    [41]
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81, 3684 (1984).10.1063/1.448118
    [42]
    J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).10.1016/S0301-0104(99)00330-4
    [43]
    T. Ogitsu, Y. Ping, A. Correa, B.-i. Cho, P. Heimann, E. Schwegler, J. Cao, and G. W. Collins, “Ballistic electron transport in non-equilibrium warm dense gold,” High Energy Density Phys. 8, 303–306 (2012).10.1016/j.hedp.2012.01.002
    [44]
    Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and V. V. Zhakhovsky, “Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse,” Appl. Phys. B 119, 401–411 (2015).10.1007/s00340-015-6048-6
    [45]
    [46]
    T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions,” Phys. Rev. B 17, 1302 (1978).10.1103/physrevb.17.1302
    [47]
    P. Mabey, S. Richardson, T. G. White, L. B. Fletcher, S. H. Glenzer, N. J. Hartley, J. Vorberger, D. O. Gericke, and G. Gregori, “A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics,” Nat. Commun. 8, 14125 (2017).10.1038/ncomms14125
    [48]
    A. Medved, R. Davis, and P. A. Vasquez, “Understanding fluid dynamics from Langevin and Fokker–Planck equations,” Fluids 5, 40 (2020).10.3390/fluids5010040
    [49]
    G. E. Norman, S. V. Starikov, and V. V. Stegailov, “Atomistic simulation of laser ablation of gold: Effect of pressure relaxation,” J. Exp. Theor. Phys. 114, 792–800 (2012).10.1134/s1063776112040115
    [50]
    E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, London, England, 1998).
    [51]
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermal Expansion: Metallic Elements and Alloys (Plenum, New York, 1975).
    [52]
    F. C. Campbell, Elements of Metallurgy and Engineering Alloys (ASM World Headquarters: ASM International, 2008).
    [53]
    E. A. Brandes, Smithell’s Metal Reference Book (Butterworths, London, England, 1983).
    [54]
    V. Syneček, H. Chessin, and M. Simerska, “The temperature dependence of lattice vibrations in gold from X-ray diffraction measurements,” Acta Crystallogr., Sect. A: Found. Adv. A26, 108–113 (1970).10.1107/S0567739470000141
    [55]
    B. E. Warren, X-Ray Diffraction (Dover Publications, Mineola, NY, 1990).
    [56]
    S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
    [57]
    T. G. White, P. Mabey, D. O. Gericke, N. J. Hartley, H. W. Doyle, D. McGonegle, D. S. Rackstraw, A. Higginbotham, and G. Gregori, “Electron-phonon equilibration in laser-heated gold films,” Phys. Rev. B 90, 014305 (2014).10.1103/physrevb.90.014305
    [58]
    V. V. Stegailov and P. A. Zhilyaev, “Warm dense gold: Effective ion–ion interaction and ionisation,” Mol. Phys. 114, 509–518 (2016).10.1080/00268976.2015.1105390
    [59]
    J. Li, J. Zhou, T. Ogitsu, Y. Ping, W. D. Ware, and J. Cao, “Probing the warm dense copper nano-foil with ultrafast electron shadow imaging and deflectometry,” High Energy Density Phys. 8, 298–302 (2012).10.1016/j.hedp.2012.05.002
    [60]
    D. M. Riffe, X. Y. Wang, M. C. Downer, D. L. Fisher, T. Tajima, J. L. Erskine, and R. M. More, “Femtosecond thermionic emission from metals in the space-charge-limited regime,” J. Opt. Soc. Am. B 10, 1424–1435 (1993).10.1364/josab.10.001424
    [61]
    Y. Ping, A. A. Correa, T. Ogitsu, E. Draeger, E. Schwegler, T. Ao, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, D. Hanson, I. Koslow, D. Prendergast, G. Collins, and A. Ng, “Warm dense matter created by isochoric laser heating,” High Energy Density Phys. 6, 246–257 (2010).10.1016/j.hedp.2009.12.009
    [62]
    M. Vos, R. P. McEachran, E. Weigold, and R. A. Bonham, “Elastic electron scattering cross sections at high momentum transfer,” Nucl. Instrum. Methods Phys. Res., Sect. B 300, 62–67 (2013).10.1016/j.nimb.2013.01.043
    [63]
    P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O’Keefe, and B. T. M. Willis, “Intensity of diffracted intensities,” in International Tables for Crystallography Volume C (Wiley, 2006), pp. 554–595.
    [64]
    L. Reimer and H. Kohl, Transmission Electron Microscopy: Physics of Image Formation (Springer US, Boston, MA, 2008).
    [65]
    R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer US, Boston, MA, 2014).
    [66]
    T. Ida, M. Ando, and H. Toraya, “Extended pseudo-Voigt function for approximating the Voigt profile,” J. Appl. Crystallogr. 33, 1311–1316 (2000).10.1107/s0021889800010219
    [67]
    Z. Lin and L. V. Zhigilei, “Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study,” Phys. Rev. B 73, 184113 (2006).10.1103/physrevb.73.184113
    [68]
    X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, “Atomic scale structure of sputtered metal multilayers,” Acta Mater. 49, 4005–4015 (2001).10.1016/s1359-6454(01)00287-7
    [69]
    A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).10.1088/0965-0393/18/1/015012
    [70]
    P. M. Larsen, S. Schmidt, and J. Schiøtz, “Robust structural identification via polyhedral template matching,” Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).10.1088/0965-0393/24/5/055007
    [71]
    Z. Lin, E. Leveugle, E. M. Bringa, and L. V. Zhigilei, “Molecular dynamics simulation of laser melting of nanocrystalline Au,” J. Phys. Chem. C 114, 5686–5699 (2010).10.1021/jp909328q
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (404) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return