Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Kong Lingping, Liu Gang. Synchrotron-based infrared microspectroscopy under high pressure: An introduction[J]. Matter and Radiation at Extremes, 2021, 6(6): 068202. doi: 10.1063/5.0071856
Citation: Kong Lingping, Liu Gang. Synchrotron-based infrared microspectroscopy under high pressure: An introduction[J]. Matter and Radiation at Extremes, 2021, 6(6): 068202. doi: 10.1063/5.0071856

Synchrotron-based infrared microspectroscopy under high pressure: An introduction

doi: 10.1063/5.0071856
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: konglp@hpstar.ac.cn
  • Received Date: 2021-09-17
  • Accepted Date: 2021-10-21
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Synchrotron sources with high photon flux, small source size, and broad energy range have revolutionized ultrafine characterization of condensed matter. With the addition of the pressure dimension realized by the use of diamond anvil cells, enormous progress has been achieved throughout high-pressure science. This is particularly so for synchrotron-based infrared microspectroscopy (SIRMS) with its very high signal-to-noise ratio, high spatial resolution, and extended measurement conditions. SIRMS has high sensitivity, providing a platform for the investigations of the very small amounts of material that need to be used in high-pressure research. This review summarizes developments in SIRMS, focusing on instrumentation and high-pressure measurements. Applications to measurements of infrared reflectance and absorption are presented, illustrating how SIRMS results play a crucial role in advancing understanding of the crystalline phase transitions, electronic transitions, metallization, lattice dynamics, superconductivity, and novel functional behavior. New insights into spectroscopic properties, together with some cutting edge issues and open problems, are also briefly discussed.
  • loading
  • [1]
    P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (John Wiley & Sons Inc, 2006).
    [2]
    H. Okamura, Y. Ikemoto, T. Moriwaki, and T. Nanba, “Infrared spectroscopy techniques for studying the electronic structures of materials under high pressure,” Jpn. J. Appl. Phys., Part 1 56(5S3), 05FA11 (2017).10.7567/jjap.56.05fa11
    [3]
    R. Bini and G. Pratesi, “High-pressure infrared study of solid methane: Phase diagram up to 30 GPa,” Phys. Rev. B 55(22), 14800–14809 (1997).10.1103/physrevb.55.14800
    [4]
    X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin, D. B. Tanner, and G. L. Carr, “Signatures of a pressure-induced topological quantum phase transition in BiTeI,” Phys. Rev. Lett. 111(15), 155701 (2013).10.1103/physrevlett.111.155701
    [5]
    C. Pépin, P. Loubeyre, F. Occelli, and P. Dumas, “Synthesis of lithium polyhydrides above 130 GPa at 300 K,” Proc. Natl. Acad. Sci. U. S. A. 112(25), 7673–7676 (2015).10.1073/pnas.1507508112
    [6]
    T. V. Brinzari, K. R. O’Neal, J. L. Manson, J. A. Schlueter, A. P. Litvinchuk, Z. Liu, and J. L. Musfeldt, “Local lattice distortions in Mn[N(CN)2]2 under pressure,” Inorg. Chem. 55(5), 1956–1961 (2016).10.1021/acs.inorgchem.5b01870
    [7]
    W.-Q. Han, H.-G. Yu, C. Zhi, J. Wang, Z. Liu, T. Sekiguchi, and Y. Bando, “Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes,” Nano Lett. 8(2), 491–494 (2008).10.1021/nl0726151
    [8]
    Z. Zhao, H. Zhang, H. Yuan, S. Wang, Y. Lin, Q. Zeng, G. Xu, Z. Liu, G. K. Solanki, K. D. Patel, Y. Cui, H. Y. Hwang, and W. L. Mao, “Pressure induced metallization with absence of structural transition in layered molybdenum diselenide,” Nat. Commun. 6(1), 7312 (2015).10.1038/ncomms8312
    [9]
    O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, and K. Tait, “Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle,” Science 359(6380), 1136–1139 (2018).10.1126/science.aao3030
    [10]
    M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, “Pressure-induced bonding and compound formation in xenon–hydrogen solids,” Nat. Chem. 2(1), 50–53 (2010).10.1038/nchem.445
    [11]
    N. Kong, F. Wan, W. Dai, P. Wu, C. Su, C. Peng, K. Zheng, X. Chen, S. Ling, J. Gong, and Y. Yao, “A cuboid spider silk: Structure-function relationship and polypeptide signature,” Macromol. Rapid Commun. 41(6), 1900583 (2020).10.1002/marc.201900583
    [12]
    W. Zhang, C. Ye, K. Zheng, J. Zhong, Y. Tang, Y. Fan, M. J. Buehler, S. Ling, and D. L. Kaplan, “Tensan silk-inspired hierarchical fibers for smart textile applications,” ACS Nano 12(7), 6968–6977 (2018).10.1021/acsnano.8b02430
    [13]
    X. Xi, X.-G. He, F. Guan, Z. Liu, R. D. Zhong, J. A. Schneeloch, T. S. Liu, G. D. Gu, X. Du, Z. Chen, X. G. Hong, W. Ku, and G. L. Carr, “Bulk signatures of pressure-induced band inversion and topological phase transitions in Pb1−xSnxSe,” Phys. Rev. Lett. 113(9), 096401 (2014).10.1103/physrevlett.113.096401
    [14]
    M. Matsunami, H. Okamura, A. Ochiai, and T. Nanba, “Pressure tuning of an ionic insulator into a heavy electron metal: An infrared study of YbS,” Phys. Rev. Lett. 103(23), 237202 (2009).10.1103/physrevlett.103.237202
    [15]
    A. Dewaele, P. Loubeyre, P. Dumas, and M. Mezouar, “Oxygen impurities reduce the metallization pressure of xenon,” Phys. Rev. B 86(1), 014103 (2012).10.1103/physrevb.86.014103
    [16]
    A. Irizawa, S. Suga, G. Isoyama, K. Shimai and K. Sato, “Direct observation of a pressure-induced metal-insulator transition in LiV2O4 by optical studies,” Phys. Rev. B 84(23), 235116 (2011).10.1103/physrevb.84.235116
    [17]
    M. J. Rice, “Organic linear conductors as systems for the study of electron-phonon interactions in the organic solid state,” Phys. Rev. Lett. 37(1), 36–39 (1976).10.1103/physrevlett.37.36
    [18]
    A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, “Gate tunable infrared phonon anomalies in bilayer graphene,” Phys. Rev. Lett. 103(11), 116804 (2009).10.1103/physrevlett.103.116804
    [19]
    M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, UK, 2002).
    [20]
    G. Burns, in Solid State Physics (Academic Press, San Diego, CA, 1985), Chap. 13.
    [21]
    M. Bishop, R. Chellappa, M. Pravica, J. Coe et al., “1,1-diamino-2,2-dinitroethylene under high-pressure-high-temperature,” Bull. Am. Phys. Soc. 137(17), 174304 (2012).10.1063/1.4759448
    [22]
    D. Kraemer, M. L. Cowan, A. Paarmann, N. Huse, E. T. J. Nibbering, T. Elsaesser, and R. J. Dwayne Miller, “Temperature dependence of the two-dimensional infrared spectrum of liquid H2O,” Proc. Natl. Acad. Sci. U. S. A. 105(2), 437–442 (2008).10.1073/pnas.0705792105
    [23]
    Y. Yang, Q. Xia, M. Feng, and P. Zhang, “Temperature dependence of IR absorption of OH species in clinopyroxene,” Am. Mineral. 95(10), 1439–1443 (2010).10.2138/am.2010.3501
    [24]
    K. W. Post, B. C. Chapler, L. He, X. Kou, K. L. Wang, and D. N. Basov, “Thickness-dependent bulk electronic properties in Bi2Se3 thin films revealed by infrared spectroscopy,” Phys. Rev. B 88(7), 075121 (2013).10.1103/physrevb.88.075121
    [25]
    G. Firanescu, D. Luckhaus, and R. Signorell, “Size effects in the infrared spectra of NH3 ice nanoparticles studied by a combined molecular dynamics and vibrational exciton approach,” J. Chem. Phys. 125(14), 144501 (2006).10.1063/1.2356475
    [26]
    W. Huang, P.-H. Chien, K. McMillen, S. Patel, J. Tedesco, L. Zeng, S. Mukherjee, B. Wang, Y. Chen, G. Wang, Y. Wang, Y. Gao, M. J. Bedzyk, D. M. DeLongchamp, Y.-Y. Hu, J. E. Medvedeva, T. J. Marks, and A. Facchetti, “Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide,” Proc. Natl. Acad. Sci. U. S. A. 117(31), 18231–18239 (2020).10.1073/pnas.2007897117
    [27]
    P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. L. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL,” Infrared Phys. Technol. 49(1–2), 152–160 (2006).10.1016/j.infrared.2006.01.030
    [28]
    E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared,” J. Synchrotron Radiat. 15(4), 323–328 (2008).10.1107/s0909049508004524
    [29]
    M. C. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29(6), 453–463 (2010).10.1016/j.trac.2010.03.002
    [30]
    I. Yousef, L. Ribó, A. Crisol, I. Šics, G. Ellis, T. Ducic, M. Kreuzer, N. Benseny-Cases, M. Quispe, P. Dumas, S. Lefrançois, T. Moreno, G. García, S. Ferrer, J. Nicolas, and M. A. G. Aranda, “MIRAS: The infrared synchrotron radiation beamline at ALBA,” Synchrotron Radiat. News 30(4), 4–6 (2017).10.1080/08940886.2017.1338410
    [31]
    T. Ji, Y. Tong, H. Zhu, Z. Zhang, W. Peng, M. Chen, T. Xiao, and H. Xu, “The status of the first infrared beamline at Shanghai Synchrotron Radiation Facility,” Nucl. Instrum. Methods Phys. Res., Sect. A 788, 116–121 (2015).10.1016/j.nima.2015.03.080
    [32]
    G. Liu, L. Kong, W. Yang, and H.-k. Mao, “Pressure engineering of photovoltaic perovskites,” Mater. Today 27, 91–106 (2019).10.1016/j.mattod.2019.02.016
    [33]
    W. D. Duncan and G. P. Williams, “Infrared synchrotron radiation from electron storage rings,” Appl. Opt. 22(18), 2914–2923 (1983).10.1364/ao.22.002914
    [34]
    R. A. Bosch, “Extraction of edge radiation within a straight section of Aladdin,” Rev. Sci. Instrum. 73(3), 1423–1426 (2002).10.1063/1.1435813
    [35]
    Y.-L. Mathis, P. Roy, B. Tremblay, A. Nucara, S. Lupi, P. Calvani, and A. Gerschel, “Magnetic field discontinuity as a new brighter source of infrared synchrotron radiation,” Phys. Rev. Lett. 80(6), 1220–1223 (1998).10.1103/physrevlett.80.1220
    [36]
    P. Dumas, L. M. Miller, and M. J. Tobin, “Challenges in biology and medicine with synchrotron infrared light,” Acta Phys. Pol., A 115(2), 446–454 (2009).10.12693/aphyspola.115.446
    [37]
    G. L. Carr, O. Chubar, and P. Dumas, in Spectrochemical Analysis Using Infrared Multichannel Detectors, edited by R. Bhargava and I. W. Levin (Blackwell Publishing, Oxford, UK, 2006).
    [38]
    C. Hu, X. Wang, Z. Qi, and C. Li, “The new infrared beamline at NSRL,” Infrared Phys. Technol. 105, 103200 (2020).10.1016/j.infrared.2020.103200
    [39]
    Bruker Corporation, “Detector characterization using FTIR spectrometer,” Application Note AN M161 (2019).
    [40]
    W. R. Mckinney, C. J. Hirschmugl, H. A. Padmore et al., “First infrared beamline at the ALS: Design, construction, and initial commissioning,” Proc. SPIE 3153, 59–67 (1997).10.1117/12.290260
    [41]
    H. Kimura, T. Moriwaki, S. Takahashi et al., “Infrared beamline BL43IR at SPring-8: Design and commissioning,” Nucl. Instrum. Methods Phys. Res., Sect. A 467–468, 441–444 (2001).10.1016/s0168-9002(01)00352-7
    [42]
    S. Kimura, H. Kimura, T. Takahashi, K. Fukui, Y. Kondo, Y. Yoshimatsu, T. Moriwaki, T. Nanba, and T. Ishikawa, “Front end and optics of infrared beamline at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467–468, 437–440 (2001).10.1016/s0168-9002(01)00351-5
    [43]
    Y. Ikemoto, T. Moriwaki, T. Hirono, S. Kimura, K. Shinoda, M. Matsunami, N. Nagai, T. Nanba, K. Kobayashi, and H. Kimura, “Infrared microspectroscopy station at BL43IR of SPring-8,” Infrared Phys. Technol. 45(5–6), 369–373 (2004).10.1016/j.infrared.2004.01.004
    [44]
    R. Pascale, M. Rouzières, Z. M. Qi, and O. Chubar, “The AILES infrared beamline on the third generation Synchrotron Radiation Facility SOLEIL,” Infrared Phys. Technol. 49(1–2), 139–146 (2006).10.1016/j.infrared.2006.01.015
    [45]
    D. Creagh, J. McKinlay, and P. Dumas, “The design of the infrared beamline at the Australian synchrotron,” Vib. Spectrosc. 41, 213–220 (2006).10.1016/j.vibspec.2006.02.009
    [46]
    D. J. Paterson, J. W. Boldeman, D. D. Cohen, and C. G. Ryan, “Microspectroscopy beamline at the Australian synchrotron,” AIP Conf. Proc. 879(1), 864–867 (2007).10.1063/1.2436197
    [47]
    S. Lupi, A. Nucara, A. Perucchi, P. Calvani, M. Ortolani, L. Quaroni, and M. Kiskinova, “Performance of SISSI, the infrared beamline of the ELETTRA storage ring,” J. Opt. Soc. Am. B 24(4), 959–964 (2007).10.1364/josab.24.000959
    [48]
    T. May, T. Ellis, and R. Reininger, “Mid-infrared spectromicroscopy beamline at the Canadian Light Source,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 111–113 (2007).10.1016/j.nima.2007.08.074
    [49]
    I. Yousef, S. Lefrançois, T. Moreno, H. Hoorani, F. Makahleh, A. Nadji, and P. Dumas, “Simulation and design of an infrared beamline for SESAME (synchrotron-light for experimental science and applications in the Middle East),” Nucl. Instrum. Methods Phys. Res., Sect. A 673, 73–81 (2012).10.1016/j.nima.2011.12.012
    [50]
    B. Chae, Y. D. Yun, H.-Y. Kim, C. K. Ryu, S. Lefrançois, and P. Dumas, “12D IRS: The infrared synchrotron radiation beamline at PAL,” Synchrotron Radiat. News 30(4), 6–8 (2017).10.1080/08940886.2017.1338413
    [51]
    Z. Zhang, M. Chen, Y. Tong, T. Ji, H. Zhu, W. Peng, M. Zhang, Y. Li, and T. Xiao, “Performance of the infrared microspectroscopy station at SSRF,” Infrared Phys. Technol. 67, 521–525 (2014).10.1016/j.infrared.2014.09.015
    [52]
    X. J. Zhou, H. C. Zhu, J. J. Zhong, W. W. Peng, T. Ji, Y. C. Lin, Y. Z. Tang, and M. Chen, “New status of the infrared beamlines at SSRF,” Nucl. Sci. Tech. 30(12), 182 (2019).10.1007/s41365-019-0696-x
    [53]
    A. F. Goncharov, L. Kong, and H. K. Mao, “High-pressure integrated synchrotron infrared spectroscopy system at the Shanghai Synchrotron Radiation Facility,” Rev. Sci. Instrum. 90(9), 093905 (2019).10.1063/1.5109065
    [54]
    S. Klotz, in High Pressure Physics, edited by J. Loveday (CRC Press, Boca Raton, FL, 2012), Chap. 1.
    [55]
    N. Tateiwa and Y. Haga, “Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell,” Rev. Sci. Instrum. 80(12), 123901 (2009).10.1063/1.3265992
    [56]
    S. Klotz, K. Takemura, T. Strässle, and T. Hansen, “Freezing of glycerol-water mixtures under pressure,” J. Phys.: Condens. Matter 24(32), 325103 (2012).10.1088/0953-8984/24/32/325103
    [57]
    C. T. Seagle, W. Zhang, D. L. Heinz, and Z. Liu, “Far-infrared dielectric and vibrational properties of nonstoichiometric wüstite at high pressure,” Phys. Rev. B 79(1), 014104 (2009).10.1103/physrevb.79.014104
    [58]
    E. Wigner and H. B. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3(12), 764–770 (1935).10.1063/1.1749590
    [59]
    E. Babaev, A. Sudbø, and N. W. Ashcroft, “A superconductor to superfluid phase transition in liquid metallic hydrogen,” Nature 431(7009), 666–668 (2004).10.1038/nature02910
    [60]
    S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, “A quantum fluid of metallic hydrogen suggested by first-principles calculations,” Nature 431(7009), 669–672 (2004).10.1038/nature02968
    [61]
    H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66(2), 671–692 (1994).10.1103/revmodphys.66.671
    [62]
    J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84(4), 1607–1653 (2012).10.1103/revmodphys.84.1607
    [63]
    H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90(1), 015007 (2018).10.1103/revmodphys.90.015007
    [64]
    P. Loubeyre, R. Letoullec, and J. P. Pinceaux, “Properties of H2 under strong compression in a Ne matrix,” Phys. Rev. Lett. 67(23), 3271–3274 (1991).10.1103/physrevlett.67.3271
    [65]
    M. Hanfland, R. J. Hemley, H. K. Mao, and G. P. Williams, “Synchrotron infrared spectroscopy at megabar pressures-vibrational dynamics of hydrogen to 180 GPa,” Phys. Rev. Lett. 69(7), 1129–1132 (1992).10.1103/physrevlett.69.1129
    [66]
    J. H. Eggert, H.-k. Mao, and R. J. Hemley, “Observation of a two-vibron bound-to-unbound transition in solid deuterium at high pressure,” Phys. Rev. Lett. 70(15), 2301–2304 (1993).10.1103/physrevlett.70.2301
    [67]
    S. K. Sharma, H. K. Mao, and P. M. Bell, “Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature,” Phys. Rev. Lett. 44(13), 886–888 (1980).10.1103/physrevlett.44.886
    [68]
    A. F. Goncharov, J. H. Eggert, I. I. Mazin, R. J. Hemley, and H.-k. Mao, “Raman excitations and orientational ordering in deuterium at high pressure,” Phys. Rev. B 54(22), R15590–R15593 (1996).10.1103/physrevb.54.r15590
    [69]
    C.-s. Zha, Z. Liu, M. Ahart, R. Boehler, and R. J. Hemley, “High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy,” Phys. Rev. Lett. 110(21), 217402 (2013).10.1103/physrevlett.110.217402
    [70]
    C.-s. Zha, H. Liu, J. S. Tse, and R. J. Hemley, “Melting and high P–T transitions of hydrogen up to 300 GPa,” Phys. Rev. Lett. 119(7), 075302 (2017).10.1103/physrevlett.119.075302
    [71]
    R. Pucci, N. H. March, and F. Siringo, “Maximum in vibrational frequency shift of a hydrogen molecule in solid hydrogen under pressure,” J. Phys. Chem. Solids 47(2), 231–236 (1986).10.1016/0022-3697(86)90134-4
    [72]
    A. F. Goncharov, I. Chuvashova, C. Ji, and H.-k. Mao, “Intermolecular coupling and fluxional behavior of hydrogen in phase IV,” Proc. Natl. Acad. Sci. U. S. A. 116(51), 25512–25515 (2019).10.1073/pnas.1916385116
    [73]
    P. Loubeyre, F. Occelli, and P. Dumas, “Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K,” Phys. Rev. B 87(13), 134101 (2013).10.1103/physrevb.87.134101
    [74]
    M. I. Eremets, A. P. Drozdov, P. P. Kong, and H. Wang, “Semimetallic molecular hydrogen at pressure above 350 GPa,” Nat. Phys. 15(12), 1246–1249 (2019).10.1038/s41567-019-0646-x
    [75]
    N. H. Chen, E. Sterer, and I. F. Silvera, “Extended infrared studies of high pressure hydrogen,” Phys. Rev. Lett. 76(10), 1663–1666 (1996).10.1103/physrevlett.76.1663
    [76]
    C.-S. Zha, Z. Liu, and R. J. Hemley, “Synchrotron infrared measurements of dense hydrogen to 360 GPa,” Phys. Rev. Lett. 108(14), 146402 (2012).10.1103/physrevlett.108.146402
    [77]
    P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577(7792), 631–635 (2020).10.1038/s41586-019-1927-3
    [78]
    E. Gregoryanz, A. F. Goncharov, R. J. Hemley, H.-k. Mao, M. Somayazulu, and G. Shen, “Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures,” Phys. Rev. B 66(22), 224108 (2002).10.1103/physrevb.66.224108
    [79]
    R. Bini, L. Ulivi, J. Kreutz, and H. J. Jodl, “High-pressure phases of solid nitrogen by Raman and infrared spectroscopy,” J. Chem. Phys. 112(19), 8522–8529 (2000).10.1063/1.481455
    [80]
    A. F. Goncharov, E. Gregoryanz, H.-k. Mao, Z. Liu, and R. J. Hemley, “Optical evidence for a nonmolecular phase of nitrogen above 150 GPa,” Phys. Rev. Lett. 85(6), 1262–1265 (2000).10.1103/physrevlett.85.1262
    [81]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525(7567), 73–76 (2015).10.1038/nature14964
    [82]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569(7757), 528–531 (2019).10.1038/s41586-019-1201-8
    [83]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586(7829), 373–377 (2020).10.1038/s41586-020-2801-z
    [84]
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4(1), 6968 (2015).10.1038/srep06968
    [85]
    I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, “High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor,” Phys. Rev. Lett. 114(15), 157004 (2015).10.1103/physrevlett.114.157004
    [86]
    N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, “What superconducts in sulfur hydrides under pressure and why,” Phys. Rev. B 91(6), 060511 (2015).10.1103/physrevb.91.060511
    [87]
    D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, “Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur,” Phys. Rev. B 91(18), 184511 (2015).10.1103/physrevb.91.184511
    [88]
    J. A. Flores-Livas, A. Sanna, and E. K. U. Gross, “High temperature superconductivity in sulfur and selenium hydrides at high pressure,” Eur. Phys. J. B 89(3), 63 (2016).10.1140/epjb/e2016-70020-0
    [89]
    F. Capitani, B. Langerome, J.-B. Brubach, P. Roy, A. Drozdov, M. I. Eremets, E. J. Nicol, J. P. Carbotte, and T. Timusk, “Spectroscopic evidence of a new energy scale for superconductivity in H3S,” Nat. Phys. 13(9), 859–863 (2017).10.1038/nphys4156
    [90]
    S. L. James, “Metal-organic frameworks,” Chem. Soc. Rev. 32(5), 276–288 (2003).10.1039/b200393g
    [91]
    H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science 341(6149), 1230444 (2013).10.1126/science.1230444
    [92]
    J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal–organic framework materials as catalysts,” Chem. Soc. Rev. 38(5), 1450–1459 (2009).10.1039/b807080f
    [93]
    L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, “Metal–organic framework materials as chemical sensors,” Chem. Rev. 112(2), 1105–1125 (2012).10.1021/cr200324t
    [94]
    Y. Cui, Y. Yue, G. Qian, and B. Chen, “Luminescent functional metal–organic frameworks,” Chem. Rev. 112(2), 1126–1162 (2012).10.1021/cr200101d
    [95]
    J.-R. Li, R. J. Kuppler, and H.-C. Zhou, “Selective gas adsorption and separation in metal–organic frameworks,” Chem. Soc. Rev. 38(5), 1477–1504 (2009).10.1039/b802426j
    [96]
    L. Zhu and Y.-B. Zhang, “Crystallization of covalent organic frameworks for gas storage applications,” Molecules 22(7), 1149 (2017).10.3390/molecules22071149
    [97]
    J. Čejka, “Metal-organic frameworks: Applications from catalysis to gas storage. Edited by David Farrusseng,” Angew. Chem. 51(20), 4782–4783 (2012).10.1002/anie.201200812
    [98]
    Y. Hu, Z. Liu, J. Xu, Y. Huang, and Y. Song, “Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy,” J. Am. Chem. Soc. 135(25), 9287–9290 (2013).10.1021/ja403635b
    [99]
    A. Celeste, A. Paolone, J.-P. Itié, F. Borondics, B. Joseph, O. Grad, G. Blanita, C. Zlotea, and F. Capitani, “Mesoporous metal–organic framework MIL-101 at high pressure,” J. Am. Chem. Soc. 142(35), 15012–15019 (2020).10.1021/jacs.0c05882
    [100]
    S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10(5), 391–402 (2015).10.1038/nnano.2015.90
    [101]
    C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, and M. Grätzel, “Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells,” Energy Environ. Sci. 9(2), 656–662 (2016).10.1039/c5ee03255e
    [102]
    M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, “Steric engineering of metal-halide perovskites with tunable optical band gaps,” Nat. Commun. 5(1), 5757 (2014).10.1038/ncomms6757
    [103]
    W. Zhang, G. E. Eperon, and H. J. Snaith, “Metal halide perovskites for energy applications,” Nat. Energy 1(6), 16048 (2016).10.1038/nenergy.2016.48
    [104]
    G. Liu, L. Kong, J. Gong, W. Yang, H. K. Mao, Q. Hu, Z. Liu, R. D. Schaller, D. Zhang, and T. Xu, “Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability,” Adv. Funct. Mater. 27(3), 1604208 (2017).10.1002/adfm.201604208
    [105]
    G. Liu, L. Kong, P. Guo, C. C. Stoumpos, Q. Hu, Z. Liu, Z. Cai, D. J. Gosztola, H.-k. Mao, M. G. Kanatzidis, and R. D. Schaller, “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2(11), 2518–2524 (2017).10.1021/acsenergylett.7b00807
    [106]
    G. Liu, J. Gong, L. Kong, R. D. Schaller, Q. Hu, Z. Liu, S. Yan, W. Yang, C. C. Stoumpos, M. G. Kanatzidis, H.-k. Mao, and T. Xu, “Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing,” Proc. Natl. Acad. Sci. U. S. A. 115(32), 8076–8081 (2018).10.1073/pnas.1809167115
    [107]
    L. Kong, G. Liu, J. Gong, L. Mao, M. Chen, Q. Hu, X. Lü, W. Yang, M. G. Kanatzidis, and H.-k. Mao, “Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites,” Proc. Natl. Acad. Sci. U. S. A. 117(28), 16121–16126 (2020).10.1073/pnas.2003561117
    [108]
    L. Kong, G. Liu, J. Gong, Q. Hu, R. D. Schaller, P. Dera, D. Zhang, Z. Liu, W. Yang, K. Zhu, Y. Tang, C. Wang, S.-H. Wei, T. Xu, and H.-k. Mao, “Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites,” Proc. Natl. Acad. Sci. U. S. A. 113(32), 8910–8915 (2016).10.1073/pnas.1609030113
    [109]
    A. Jaffe, Y. Lin, W. L. Mao, and H. I. Karunadasa, “Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3,” J. Am. Chem. Soc. 139(12), 4330–4333 (2017).10.1021/jacs.7b01162
    [110]
    L. Kong, J. Gong, Q. Hu, F. Capitani, A. Celeste, T. Hattori, A. Sano‐Furukawa, N. Li, W. Yang, G. Liu, and H. k. Mao, “Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect,” Adv. Funct. Mater. 31(9), 2009131 (2021).10.1002/adfm.202009131
    [111]
    A. Kavner, “Elasticity and strength of hydrous ringwoodite at high pressure,” Earth Planet. Sci. Lett. 214(3–4), 645–654 (2003).10.1016/s0012-821x(03)00402-3
    [112]
    S.-i. Karato, C. Dupas-Bruzek, and D. C. Rubie, “Plastic deformation of silicate spinel under the transition-zone conditions of the Earth’s mantle,” Nature 395(6699), 266–269 (1998).10.1038/26206
    [113]
    S. Mei and D. L. Kohlstedt, “Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime,” J. Geophys. Res. 105, 21471–21481 (2000).10.1029/2000jb900180
    [114]
    H. P. Scott and Q. Williams, “An infrared spectroscopic study of lawsonite to 20 GPa,” Phys. Chem. Miner. 26, 437–445 (1999).10.1007/s002690050206
    [115]
    T. B. Ballaran and R. J. Angel, “Equation of state and high-pressure phase transitions in lawsonite,” Eur. J. Mineral. 15(2), 241–246 (2003).10.1127/0935-1221/2003/0015-0241
    [116]
    A. R. Pawley and D. R. Allan, “A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation,” Mineral. Mag. 65(1), 41–58 (2001).10.1180/002646101550118
    [117]
    B. Schmandt, S. D. Jacobsen, T. W. Becker, Z. Liu, and K. G. Dueker, “Dehydration melting at the top of the lower mantle,” Science 344(6189), 1265–1268 (2014).10.1126/science.1253358
    [118]
    M. K. Müller, A. M. Hofmeister, Y. W. Fei, and Z. X. Liu, “High-pressure IR-spectra and the thermodynamic properties of chloritoid,” Am. Mineral. 87, 609–622 (2002).10.2138/am-2002-5-603
    [119]
    L. Baldassarre, A. Perucchi, E. Arcangeletti, D. Nicoletti, D. Di Castro, P. Postorino, V. A. Sidorov, and S. Lupi, “Electrodynamics near the metal-to-insulator transition in V3O5,” Phys. Rev. B 75(24), 245108 (2007).10.1103/physrevb.75.245108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (415) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return