Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Hu Qingyang, Mao Ho-kwang. Born’s valence force-field model for diamond at terapascals: Validity and implications for the primary pressure scale[J]. Matter and Radiation at Extremes, 2021, 6(6): 068403. doi: 10.1063/5.0069479
Citation: Hu Qingyang, Mao Ho-kwang. Born’s valence force-field model for diamond at terapascals: Validity and implications for the primary pressure scale[J]. Matter and Radiation at Extremes, 2021, 6(6): 068403. doi: 10.1063/5.0069479

Born’s valence force-field model for diamond at terapascals: Validity and implications for the primary pressure scale

doi: 10.1063/5.0069479
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: qingyang.hu@hpstar.ac.cn
  • Received Date: 2021-08-31
  • Accepted Date: 2021-10-08
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Born’s valence force-field model (VFM) established a theoretical scheme for calculating the elasticity, zero-point optical mode, and lattice dynamics of diamond and diamond-structured solids. In particular, the model enabled the derivation of a numerical relation between the elastic moduli and the Raman-active F2g mode for diamond. Here, we establish a relation between the diamond Raman frequency ω and the bulk modulus K through first-principles calculation, rather than extrapolation. The calculated K exhibits a combined uncertainty of less than 5.4% compared with the results obtained from the analytical equation of the VFM. The results not only validate Born’s classic model but also provide a robust Kω functional relation extending to megabar pressures, which we use to construct a primary pressure scale through Raman spectroscopy and the crystal structure of diamond. Our computations also suggest that currently used pressure gauges may seriously overestimate pressures in the multi-megabar regime. A revised primary scale is urgently needed for such ultrahigh pressure experiments, with possible implications for hot superconductors, ultra-dense hydrogen, and the structure of the Earth’s core.
  • loading
  • [1]
    M. Born and T. von Kármán, “Über schwingungen in raumgittern,” Phys. Z. 13, 297 (1912).
    [2]
    P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145, 637–645 (1966).10.1103/PhysRev.145.637
    [3]
    R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, and T. R. Anthony, “Brillouin and Raman scattering in natural and isotopically controlled diamond,” Phys. Rev. B 54, 3989–3999 (1996).10.1103/PhysRevB.54.3989
    [4]
    V. E. Bean et al., “Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report,” Physica B+C 139–140, 52–54 (1986).10.1016/0378-4363(86)90521-8
    [5]
    G. Shen et al., “Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020),” High Press. Res. 40, 299–314 (2020).10.1080/08957959.2020.1791107
    [6]
    D. E. Fratanduono et al., “Establishing gold and platinum standards to 1 terapascal using shockless compression,” Science 372, 1063 (2021).10.1126/science.abh0364
    [7]
    C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. U. S. A. 97, 13494 (2000).10.1073/pnas.240466697
    [8]
    M. Murakami and N. Takata, “Absolute primary pressure scale to 120 GPa: Toward a pressure benchmark for Earth’s lower mantle,” J. Geophys. Res.: Solid Earth 124, 6581–6588, https://doi.org/10.1029/2019JB017635 (2019).10.1029/2019JB017635
    [9]
    F. Soubiran and B. Militzer, “Anharmonicity and phase diagram of magnesium oxide in the megabar regime,” Phys. Rev. Lett. 125, 175701 (2020).10.1103/PhysRevLett.125.175701
    [10]
    K. P. Esler et al., “Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations,” Phys. Rev. Lett. 104, 185702 (2010).10.1103/PhysRevLett.104.185702
    [11]
    K. K. Zhuravlev, A. F. Goncharov, S. N. Tkachev, P. Dera, and V. B. Prakapenka, “Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale,” J. Appl. Phys. 113, 113503 (2013).10.1063/1.4795348
    [12]
    S. Zhang et al., “Discovery of carbon-based strongest and hardest amorphous material,” Natl. Sci. Rev. (Published Online), (2021).10.1093/nsr/nwab140
    [13]
    Z. Pan, H. Sun, Y. Zhang, and C. Chen, “Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite,” Phys. Rev. Lett. 102, 055503 (2009).10.1103/PhysRevLett.102.055503
    [14]
    A. A. Correa, S. A. Bonev, and G. Galli, “Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory,” Proc. Natl. Acad. Sci. U. S. A. 103, 1204–1208 (2006).10.1073/pnas.0510489103
    [15]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/PhysRevB.59.1758
    [16]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/PhysRevB.54.11169
    [17]
    J. P. Perdew et al., “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).10.1103/PhysRevLett.100.136406
    [18]
    J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).10.1103/PhysRevB.45.13244
    [19]
    D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).10.1103/PhysRevLett.45.566
    [20]
    Y. Le Page and P. Saxe, “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress,” Phys. Rev. B 65, 104104 (2002).10.1103/PhysRevB.65.104104
    [21]
    R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., Sect. A 65, 349–354 (1952).10.1088/0370-1298/65/5/307
    [22]
    T. H. K. Barron and M. L. Klein, “Second-order elastic constants of a solid under stress,” Proc. Phys. Soc. 85, 523–532 (1965).10.1088/0370-1328/85/3/313
    [23]
    G. W. Watson, P. Tschaufeser, A. Wall, R. A. Jackson, and S. C. Parker, in Computer Modeling in Inorganic Crystallography, edited by C. R. A. Catlow (Academic Press, 1997), pp. 55–81.
    [24]
    S.-H. Yoo et al., “Finite-size correction for slab supercell calculations of materials with spontaneous polarization,” npj Comput. Mater. 7, 58 (2021).10.1038/s41524-021-00529-1
    [25]
    F. Occelli, P. Loubeyre, and R. LeToullec, “Properties of diamond under hydrostatic pressures up to 140 GPa,” Nat. Mater. 2, 151–154 (2003).10.1038/nmat831
    [26]
    H. J. McSkimin and P. Andreatch, “Elastic moduli of diamond as a function of pressure and temperature,” J. Appl. Phys. 43, 2944–2948 (1972).10.1063/1.1661636
    [27]
    J. S. Tse and W. B. Holzapfel, “Equation of state for diamond in wide ranges of pressure and temperature,” J. Appl. Phys. 104, 043525 (2008).10.1063/1.2969909
    [28]
    Y. Yi, V. Coropceanu, and J.-L. Brédas, “Nonlocal electron–phonon coupling in the pentacene crystal: Beyond the Γ-point approximation,” J. Chem. Phys. 137, 164303 (2012).10.1063/1.4759040
    [29]
    Y. Akahama and H. Kawamura, “Pressure calibration of diamond anvil Raman gauge to 410 GPa,” J. Phys.: Conf. Ser. 215, 012195 (2010).10.1088/1742-6596/215/1/012195
    [30]
    N. Dubrovinskaia, L. Dubrovinsky, R. Caracas, and M. Hanfland, “Diamond as a high pressure gauge up to 2.7 Mbar,” Appl. Phys. Lett. 97, 251903 (2010).10.1063/1.3529454
    [31]
    B. Li et al., “Diamond anvil cell behavior up to 4 Mbar,” Proc. Natl. Acad. Sci. U. S. A. 115, 1713 (2018).10.1073/pnas.1721425115
    [32]
    Y. Fei et al., “Toward an internally consistent pressure scale,” Proc. Natl. Acad. Sci. U. S. A. 104, 9182–9186 (2007).10.1073/pnas.0609013104
    [33]
    D. Ikuta et al., “Large density deficit of Earth’s core revealed by a multi-megabar primary pressure scale,” arXiv:2104.02076 (2021).
    [34]
    L. Dubrovinsky et al., “The most incompressible metal osmium at static pressures above 750 gigapascals,” Nature 525, 226–229 (2015).10.1038/nature14681
    [35]
    M. Hou et al., “Superionic iron oxide–hydroxide in Earth’s deep mantle,” Nat. Geosci. 14, 174–178 (2021).10.1038/s41561-021-00696-2
    [36]
    Q. Hu et al., “Mineralogy of the deep lower mantle in the presence of H2O,” Natl. Sci. Rev. 8, nwaa098 (2021).10.1093/nsr/nwaa098
    [37]
    M. Somayazulu et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [38]
    Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, “Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure,” Phys. Rev. Lett. 123, 097001 (2019).10.1103/PhysRevLett.123.097001
    [39]
    P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631–635 (2020).10.1038/s41586-019-1927-3
    [40]
    S. Tateno, K. Hirose, Y. Ohishi, and Y. Tatsumi, “The structure of iron in Earth’s inner core,” Science 330, 359 (2010).10.1126/science.1194662
    [41]
    J. Badro, A. S. Côté, and J. P. Brodholt, “A seismologically consistent compositional model of Earth’s core,” Proc. Natl. Acad. Sci. U. S. A. 111, 7542 (2014).10.1073/pnas.1316708111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (161) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return