Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Albertazzi B., Mabey P., Michel Th., Rigon G., Marquès J. R., Pikuz S., Ryazantsev S., Falize E., Van Box Som L., Meinecke J., Ozaki N., Gregori G., Koenig M.. Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves[J]. Matter and Radiation at Extremes, 2022, 7(3): 036902. doi: 10.1063/5.0068689
Citation: Albertazzi B., Mabey P., Michel Th., Rigon G., Marquès J. R., Pikuz S., Ryazantsev S., Falize E., Van Box Som L., Meinecke J., Ozaki N., Gregori G., Koenig M.. Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves[J]. Matter and Radiation at Extremes, 2022, 7(3): 036902. doi: 10.1063/5.0068689

Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves

doi: 10.1063/5.0068689
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: b.albertazzi@hotmail.fr
  • Received Date: 2021-08-26
  • Accepted Date: 2022-02-18
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • The interaction between a molecular cloud and an external agent (e.g., a supernova remnant, plasma jet, radiation, or another cloud) is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy. This process leads to fragmentation of the cloud and to its subsequent compression and can, eventually, initiate the gravitational collapse of a stable molecular cloud. It is, however, difficult to study such systems in detail using conventional techniques (numerical simulations and astronomical observations), since complex interactions of flows occur. In this paper, we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves, as an analog of supernova remnants interacting with a molecular cloud. The formation of a compression wave is observed in the foam ball, indicating the importance of such experiments for understanding how star formation is triggered by external agents.
  • loading
  • [1]
    B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78, 755 (2006).10.1103/revmodphys.78.755
    [2]
    K. V. Getman, E. D. Feigelson, A. Sicilia-Aguilar, P. S. Broos, M. A. Kuhn, and G. P. Garmire, “The Elephant Trunk Nebula and the Trumpler 37 cluster: Contribution of triggered star formation to the total population of an HII region,” Mon. Not. R. Astron. Soc. 426, 2917 (2012).10.1111/j.1365-2966.2012.21879.x
    [3]
    C. F. McKee and E. C. Ostriker, “Theory of star formation,” Annu. Rev. Astron. Astrophys. 45, 565 (2007).10.1146/annurev.astro.45.051806.110602
    [4]
    F. H. Shu, F. C. Adams, and S. Lizano, “Star formation in molecular clouds: Observation and theory,” Annu. Rev. Astron. Astrophys. 25, 23 (1987).10.1146/annurev.aa.25.090187.000323
    [5]
    M. R. Krumholz, “Star formation in molecular clouds,” AIP Conf. Proc. 1386, 9 (2011).10.1063/1.3636038
    [6]
    P. Slane, A. Bykov, D. C. Ellison, G. Dubner, and D. Castro, “Supernova remnants interacting with molecular clouds: X-ray and gamma-ray signatures,” Space Sci. Rev. 188, 187 (2015).10.1007/s11214-014-0062-6
    [7]
    S. Li, A. Frank, and E. G. Blackman, “Triggered star formation and its consequences,” Mon. Not. R. Astron. Soc. 444, 2884 (2014).10.1093/mnras/stu1571
    [8]
    A. P. Boss, S. I. Ipatov, S. A. Keiser, E. A. Myhill, and H. A. T. Vanhala, “Simultaneous triggered collapse of the presolar dense cloud core and injection of short-lived radioisotopes by a supernova shock wave,” Astrophys. J. 686, L119 (2008).10.1086/593057
    [9]
    J. Castor, R. Weaver, and R. McCray, “Interstellar bubbles,” Astrophys. J. 200, L107 (1975).10.1086/181908
    [10]
    R. Weaver, R. McCray, J. Castor, P. Shapiro, and R. Moore, “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377 (1977).10.1086/155692
    [11]
    A. P. Boss and S. A. Keiser, “Who pulled the trigger: A supernova or an asymptotic giant branch star,” Astrophys. J. 717, L1 (2010).10.1088/2041-8205/717/1/l1
    [12]
    L. Pan, S. J. Desch, E. Scannapieco, and F. X. Timmes, “Mixing of clumpy supernova ejecta into molecular clouds,” Astrophys. J. 756, 102 (2012).10.1088/0004-637x/756/1/102
    [13]
    A. P. Boss and S. A. Keiser, “Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. II. Varied shock wave and cloud core parameters,” Astrophys. J. 770, 51 (2013).10.1088/0004-637x/770/1/51
    [14]
    P. R. Woodward, “Shock-driven implosion of interstellar gas clouds and star formation,” Astrophys. J. 207, 484 (1976).10.1086/154516
    [15]
    J. Nittmann, S. A. E. G. Falle, and P. H. Gaskell, “The dynamical destruction of shocked gas clouds,” Mon. Not. R. Astron. Soc. 201, 833 (1982).10.1093/mnras/201.4.833
    [16]
    R. I. Klein, C. F. McKee, and P. Colella, “On the hydrodynamic interaction of shock waves with interstellar clouds. I. Nonradiative shocks in small clouds,” Astrophys. J. 420, 213 (1994).10.1086/173554
    [17]
    G. Gregori, F. Miniati, D. Ryu, and T. W. Jones, “Three-dimensional magnetohydrodynamic numerical simulations of cloud-wind interactions,” Astrophys. J. 543, 775 (2000).10.1086/317130
    [18]
    Z. F. Meng, X. Y. Can, A. M. Zhang, and B. Wang, “Study on the pressure characteristics of shock wave propagating across multilayer structures during underwater explosion,” Shock Vib. 2019, 9026214.10.1155/2019/9026214
    [19]
    S. Eliezer and J. M. Martinez Val, “The comeback of shock waves in inertial fusion energy,” Laser Part. Beams 29, 175 (2011).10.1017/s0263034611000140
    [20]
    B. Albertazzi, P. Mabey, T. Michel, G. Rigon, J.-R. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, A. Ciardi, G. Gregori, and M. Koenig, “Experimental characterization of the interaction zone between counter-propagating Taylor Sedov blast waves,” Phys. Plasmas 27, 022111 (2020).10.1063/1.5137795
    [21]
    M. Völschow, R. Banerjee, and B. Körtgen, “Star formation in evolving molecular clouds,” Astron. Astrophys. 605, A97 (2017).10.1051/0004-6361/201730721
    [22]
    E. P. G. Johansson and U. Ziegler, “Radiative interaction of shocks with small interstellar clouds as a pre-stage to star formation,” Astrophys. J. 766, 45 (2013).10.1088/0004-637x/766/1/45
    [23]
    C. F. McKee, D. J. Hollenbach, G. C. Seab, and A. G. G. M. Tielens, “The structure of time-dependent interstellar shocks and grain destruction in the interstellar medium,” Astrophys. J. 318, 674 (1987).10.1086/165403
    [24]
    K. Yirak, A. Frank, and A. J. Cunningham, “Self-convergence of radiatively cooling clumps in the interstellar medium,” Astrophys. J. 722, 412 (2010).10.1088/0004-637x/722/1/412
    [25]
    D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood‐Vasey, “Similarity criteria for the laboratory simulation of supernova hydrodynamics,” Astrophys. J. 518, 821 (1999).10.1086/307293
    [26]
    R. S. Sutherland and M. A. Dopita, “Cooling functions for low-density astrophysical plasmas,” Astrophys. J. 88, 253 (1993).10.1086/191823
    [27]
    É. Falize, C. Michaut, and S. Bouquet, “Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics,” Astrophys. J. 730, 96 (2011).10.1088/0004-637x/730/2/96
    [28]
    H. Dhanoa, J. Mackey, and J. Yates, “Pressure-driven fragmentation of multiphase clouds at high redshift,” Mon. Not. R. Astron. Soc. 444, 2085 (2014).10.1093/mnras/stu1509
    [29]
    R. M. Williams and Y. H. Chu, “Supernova remnants in the magellanic clouds. VI. The DEM L316 supernova remnants,” Astrophys. J. 635, 1077 (2005).10.1086/497681
    [30]
    K. Bockasten, “Transformation of observed radiances into radial distribution of the emission of a plasma,” J. Opt. Soc. Am. 51, 943 (1961).10.1364/josa.51.000943
    [31]
    J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, “SPECT3D—A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output,” High Energy Density Phys. 3, 181 (2007).10.1016/j.hedp.2007.02.016
    [32]
    B. T. Chiad, L. T. Ali, and A. S. Hassani, “Determination of velocity and radius of supernova remnant after 1000 yrs of explosion,” Int. J. Astron. Astrophys. 5, 125 (2015).10.4236/ijaa.2015.52016
    [33]
    A. Dizière, “Astrophysique de laboratoire avec les lasers de haute énergie et de haute puissance: Des chocs radiatifs aux jets d’étoiles jeunes,” Ph.D. dissertation (École Polytechnique, 2012).
    [34]
    B. Loupias, F. Perez, A. Benuzzi-Mounaix, N. Ozaki, M. Rabec, L. E. Gloahec, T. A. Pikuz, A. Y. Faenov, Y. Aglitskiy, and M. Koenig, “High efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states,” Laser Part. Beams 27, 601 (2009).10.1017/s0263034609990322
    [35]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. Burris-Mog, S. N. Chen, D. Da Silva, S. Dittrich, T. Herrmannsdörfer, B. Hirardin, F. Kroll, M. Nakatsutsumi, S. Nitsche, C. Riconda, L. Romagnagni, H.-P. Schlenvoigt, S. Simond, E. Veuillot, T. E. Cowan, O. Portugall, H. Pépin, and J. Fuchs, “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
    [36]
    G. Gregori, F. Miniati, D. Ryu, and T. W. Jones, “Enhanced cloud disruption by magnetic field interaction,” Astrophys. J. 527, L113 (1999).10.1086/312402
    [37]
    P. Mabey, B. Albertazzi, G. Rigon, J.-R. Marquès, C. A. J. Palmer, J. Topp-Mugglestone, P. Perez-Martin, F. Kroll, F.-E. Brack, T. E. Cowan, U. Schramm, K. Falk, G. Gregori, E. Falize, and M. Koenig, “Laboratory study of bilateral supernova remnants and continuous MHD shocks,” Astrophys. J. 896, 167 (2020).10.3847/1538-4357/ab92a4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (260) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return