Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Zhu Xing-Long, Liu Wei-Yuan, Weng Su-Ming, Chen Min, Sheng Zheng-Ming, Zhang Jie. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas[J]. Matter and Radiation at Extremes, 2022, 7(1): 014403. doi: 10.1063/5.0068265
Citation: Zhu Xing-Long, Liu Wei-Yuan, Weng Su-Ming, Chen Min, Sheng Zheng-Ming, Zhang Jie. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas[J]. Matter and Radiation at Extremes, 2022, 7(1): 014403. doi: 10.1063/5.0068265

Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas

doi: 10.1063/5.0068265
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: xinglong.zhu@sjtu.edu.cn and zmsheng@sjtu.edu.cn; a)Authors to whom correspondence should be addressed: xinglong.zhu@sjtu.edu.cn and zmsheng@sjtu.edu.cn
  • Received Date: 2021-08-24
  • Accepted Date: 2021-11-03
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • Ultra-intense short-pulse light sources are powerful tools for a wide range of applications. However, relativistic short-pulse lasers are normally generated in the near-infrared regime. Here, we present a promising and efficient way to generate tunable relativistic ultrashort pulses with wavelengths above 20 µm in a density-tailored plasma. In this approach, in the first stage, an intense drive laser first excites a nonlinear wake in an underdense plasma, and its photon frequency is then downshifted via phase modulation as it propagates in the plasma wake. Subsequently, in the second stage, the drive pulse enters a lower-density plasma region so that the wake has a larger plasma cavity in which longer-wavelength infrared pulses can be produced. Numerical simulations show that the resulting near-single-cycle pulses cover a broad spectral range of 10–40 µm with a conversion efficiency of ∼2.1% (∼34 mJ pulse energy). This enables the investigation of nonlinear infrared optics in the relativistic regime and offers new possibilities for the investigation of ultrafast phenomena and physics in strong fields.
  • loading
  • [1]
    P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4, 386 (2008).10.1038/nphys914
    [2]
    B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5, 021034 (2015).10.1103/physrevx.5.021034
    [3]
    T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287 (2012).10.1126/science.1218497
    [4]
    F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).10.1038/ncomms1816
    [5]
    C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483, 194 (2012).10.1038/nature10820
    [6]
    I. Pupeza, M. Huber, M. Trubetskov, W. Schweinberger, S. A. Hussain, C. Hofer, K. Fritsch, M. Poetzlberger, L. Vamos, E. Fill, T. Amotchkina, K. V. Kepesidis, A. Apolonski, N. Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Žigman, and F. Krausz, “Field-resolved infrared spectroscopy of biological systems,” Nature 577, 52 (2020).10.1038/s41586-019-1850-7
    [7]
    C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830 (2014).10.1038/nphoton.2014.213
    [8]
    A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440 (2012).10.1038/nphoton.2012.142
    [9]
    J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8, 927 (2014).10.1038/nphoton.2014.256
    [10]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267
    [11]
    I. V. Pogorelsky, M. Babzien, I. Ben-Zvi, M. N. Polyanskiy, J. Skaritka, O. Tresca, N. P. Dover, Z. Najmudin, W. Lu, N. Cook, A. Ting, and Y.-H. Chen, “Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser,” Plasma Phys. Controlled Fusion 58, 034003 (2016).10.1088/0741-3335/58/3/034003
    [12]
    X.-L. Zhu, W.-Y. Liu, M. Chen, S.-M. Weng, F. He, R. Assmann, Z.-M. Sheng, and J. Zhang, “Generation of 100-MeV attosecond electron bunches with terawatt few-cycle laser pulses,” Phys. Rev. Appl. 15, 044039 (2021).10.1103/physrevapplied.15.044039
    [13]
    Z. Samsonova, S. Höfer, V. Kaymak, S. Ališauskas, V. Shumakova, A. Pugžlys, A. Baltuška, T. Siefke, S. Kroker, A. Pukhov, O. Rosmej, I. Uschmann, C. Spielmann, and D. Kartashov, “Relativistic interaction of long-wavelength ultrashort laser pulses with nanowires,” Phys. Rev. X 9, 021029 (2019).10.1103/physrevx.9.021029
    [14]
    I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721 (2015).10.1038/nphoton.2015.179
    [15]
    V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).10.1038/ncomms12877
    [16]
    H. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kärtner, and K.-H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8, 141 (2017).10.1038/s41467-017-00193-4
    [17]
    P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222 (2017).10.1038/nphoton.2017.34
    [18]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424 (2007).10.1038/nphys595
    [19]
    L.-L. Yu, Y. Zhao, L.-J. Qian, M. Chen, S.-M. Weng, Z.-M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).10.1038/ncomms11893
    [20]
    A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quéré, “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440 (2017).10.1038/nphys4007
    [21]
    S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4, 1086 (2017).10.1364/optica.4.001086
    [22]
    M. Zeng, A. Martinez de la Ossa, K. Poder, and J. Osterhoff, “Plasma eyepieces for petawatt class lasers,” Phys. Plasmas 27, 023109 (2020).10.1063/1.5116416
    [23]
    L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17, 968 (2021).10.1038/s41567-021-01253-9
    [24]
    F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29 (2002).10.1073/pnas.262543899
    [25]
    Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12, 489 (2018).10.1038/s41566-018-0190-8
    [26]
    X.-L. Zhu, M. Chen, S.-M. Weng, P. McKenna, Z.-M. Sheng, and J. Zhang, “Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm,” Phys. Rev. Appl. 12, 054024 (2019).10.1103/physrevapplied.12.054024
    [27]
    X.-L. Zhu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas,” Light: Sci. Appl. 9, 46 (2020).10.1038/s41377-020-0282-3
    [28]
    S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600 (1989).10.1103/physrevlett.62.2600
    [29]
    P. Sprangle, E. Esarey, and A. Ting, “Nonlinear theory of intense laser-plasma interactions,” Phys. Rev. Lett. 64, 2011 (1990).10.1103/physrevlett.64.2011
    [30]
    Z.-M. Sheng, J.-X. Ma, Z.-Z. Xu, and W. Yu, “Effect of an electron plasma wave on the propagation of an ultrashort laser pulse,” J. Opt. Soc. Am. B 10, 122 (1993).10.1364/josab.10.000122
    [31]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [32]
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110, 185006 (2013).10.1103/physrevlett.110.185006
    [33]
    E. Guillaume, A. Döpp, C. Thaury, K. Ta Phuoc, A. Lifschitz, G. Grittani, J.-P. Goddet, A. Tafzi, S. W. Chou, L. Veisz, and V. Malka, “Electron rephasing in a laser-wakefield accelerator,” Phys. Rev. Lett. 115, 155002 (2015).10.1103/physrevlett.115.155002
    [34]
    W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, “High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control,” Phys. Rev. Lett. 117, 124801 (2016).10.1103/physrevlett.117.124801
    [35]
    T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus, and R. Kienberger, “Single-shot carrier–envelope phase measurement of few-cycle laser pulses,” Nat. Phys. 5, 357 (2009).10.1038/nphys1250
    [36]
    N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses,” Nat. Commun. 5, 3331 (2014).10.1038/ncomms4331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (132) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return