Citation: | Meier Thomas, Aslandukova Alena, Trybel Florian, Laniel Dominique, Ishii Takayuki, Khandarkhaeva Saiana, Dubrovinskaia Natalia, Dubrovinsky Leonid. In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions[J]. Matter and Radiation at Extremes, 2021, 6(6): 068402. doi: 10.1063/5.0065879 |
[1] |
M. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd ed., Concepts in Magnetic Resonance Part A (John Wiley & Sons, Ltd., 2009), Vol.34A, pp. 60–61.
|
[2] |
D. M. Grant and K. H. Robin, in Encyclopedia of Magnetic Resonance, 1st ed., edited by K. H. Grant and D. M. Robin (Wiley-VCH Verlag, 2007).
|
[3] |
N. Dubrovinskaia and L. Dubrovinsky, “Crystallography taken to the extreme,” Phys. Scr. 93, 062501 (2018).10.1088/1402-4896/aabf25
|
[4] |
M. W. MacArthur, P. C. Driscoll, and J. M. Thornton, “NMR and crystallography—Complementary approaches to structure determination,” Trends Biotechnol. 12, 149–153 (1994).10.1016/0167-7799(94)90074-4
|
[5] |
D. L. Bryce, “NMR crystallography: Structure and properties of materials from solid-state nuclear magnetic resonance observables,” IUCrJ 4, 350–359 (2017).10.1107/s2052252517006042
|
[6] |
C. Martineau, “NMR crystallography: Applications to inorganic materials,” Solid State Nucl. Magn. Reson. 63–64, 1–12 (2014).10.1016/j.ssnmr.2014.07.001
|
[7] |
H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005
|
[8] |
T. Meier, “At its extremes: NMR at giga-pascal pressures,” in Annual Reports on NMR Spectroscopy, 93rd ed., edited by G. Webb (Elsevier, London, 2018), Chap. 1, pp. 1–74.
|
[9] |
T. Meier, N. Wang, D. Mager, J. G. Korvink, S. Petitgirard, and L. Dubrovinsky, “Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance,” Sci. Adv. 3, eaao5242 (2017); arXiv:1706.00073.10.1126/sciadv.aao5242
|
[10] |
T. Meier, S. Khandarkhaeva, S. Petitgirard, T. Körber, A. Lauerer, E. Rössler, and L. Dubrovinsky, “NMR at pressures up to 90 GPa,” J. Magn. Reson. 292, 44–47 (2018); arXiv:1803.05472.10.1016/j.jmr.2018.05.002
|
[11] |
T. Meier, F. Trybel, S. Khandarkhaeva, G. Steinle-Neumann, S. Chariton, T. Fedotenko, S. Petitgirard, M. Hanfland, K. Glazyrin, N. Dubrovinskaia, and L. Dubrovinsky, “Pressure-induced hydrogen-hydrogen interaction in metallic FeH revealed by NMR,” Phys. Rev. X 9, 031008 (2019); arXiv:1902.03182.10.1103/physrevx.9.031008
|
[12] |
T. Meier, A. P. Dwivedi, S. Khandarkhaeva, T. Fedotenko, N. Dubrovinskaia, and L. Dubrovinsky, “Table-top nuclear magnetic resonance system for high-pressure studies with in situ laser heating,” Rev. Sci. Instrum. 90, 123901 (2019); arXiv:1909.09406.10.1063/1.5128592
|
[13] |
T. Meier, “Journey to the centre of the Earth: Jules Vernes’ dream in the laboratory from an NMR perspective,” Prog. Nucl. Magn. Reson. Spectrosc. 106–107, 26–36 (2018); arXiv:1803.04643.10.1016/j.pnmrs.2018.04.001
|
[14] |
S. A. Smith, W. E. Palke, and J. T. Gerig, “The Hamiltonians of NMR. Part I,” Concepts Magn. Reson. 4, 107–144 (1992).10.1002/cmr.1820040202
|
[15] |
G. E. Pake, “Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line,” J. Chem. Phys. 16, 327–336 (1948).10.1063/1.1746878
|
[16] |
J. W. Hennel and J. Klinowski, “Magic-angle spinning: A historical perspective,” in New Techniques in Solid-State NMR, 246th ed., Topics in Current Chemistry Vol. 2, edited by J. Klinowski (Springer, Berlin, Heidelberg, 2005), pp. 1–14.
|
[17] |
T. Meier, T. Herzig, and J. Haase, “Moissanite anvil cell design for giga-pascal nuclear magnetic resonance,” Rev. Sci. Instrum. 85, 043903 (2014).10.1063/1.4870798
|
[18] |
T. Meier, S. Petitgirard, S. Khandarkhaeva, and L. Dubrovinsky, “Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice,” Nat. Commun. 9, 2766 (2018); arXiv:1803.07019.10.1038/s41467-018-05164-x
|
[19] |
T. Meier, D. Laniel, M. Pena-Alvarez, F. Trybel, S. Khandarkhaeva, A. Krupp, J. Jacobs, N. Dubrovinskaia, and L. Dubrovinsky, “Nuclear spin coupling crossover in dense molecular hydrogen,” Nat. Commun. 11, 6334 (2020).10.1038/s41467-020-19927-y
|
[20] |
M. Lee and W. I. Goldburg, “Nuclear-magnetic-resonance line narrowing by a rotating rf field,” Phys. Rev. 140, A1261–A1271 (1965).10.1103/physrev.140.a1261
|
[21] |
T. Meier, S. Reichardt, and J. Haase, “High-sensitivity NMR beyond 200 000 atmospheres of pressure,” J. Magn. Reson. 257, 39–44 (2015).10.1016/j.jmr.2015.05.007
|
[22] |
T. Meier, S. Khandarkhaeva, J. Jacobs, N. Dubrovinskaia, and L. Dubrovinsky, “Improving resolution of solid state NMR in dense molecular hydrogen,” Appl. Phys. Lett. 115, 131903 (2019); arXiv:1908.01150v1.10.1063/1.5123232
|
[23] |
Y. Akahama and H. Kawamura, “High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range,” J. Appl. Phys. 96, 3748 (2004).10.1063/1.1778482
|
[24] |
Y. Akahama and H. Kawamura, “Pressure calibration of diamond anvil Raman gauge to 310GPa,” J. Appl. Phys. 100, 043516 (2006).10.1063/1.2335683
|
[25] |
R. R. Ernst, G. Bodenhausen, A. Wokaun, and A. G. Redfield, “Principles of nuclear magnetic resonance in one and two dimensions,” Phys. Today 42(7), 75–76 (1989).10.1063/1.2811094
|
[26] |
E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-K. Mao, “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
|
[27] |
R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017); arXiv:1610.01634.10.1126/science.aal1579
|
[28] |
H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275–277 (2017).10.1016/j.mre.2017.10.001
|
[29] |
D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020); arXiv:2003.02758.10.1103/physrevlett.124.216001
|
[30] |
Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, “Route to high-energy density polymeric nitrogen t-N via He–N compounds,” Nat. Commun. 9, 722 (2018).10.1038/s41467-018-03200-4
|
[31] |
D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, “Synthesis of magnesium-nitrogen salts of polynitrogen anions,” Nat. Commun. 10, 4515 (2019).10.1038/s41467-019-12530-w
|
[32] |
D. Laniel, G. Weck, and P. Loubeyre, “Direct reaction of nitrogen and lithium up to 75 GPa: Synthesis of the Li3N, LiN, LiN2, and LiN5 compounds,” Inorg. Chem. 57, 10685–10693 (2018).10.1021/acs.inorgchem.8b01325
|
[33] |
D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
|
[34] |
L. A. O’Dell and C. I. Ratcliffe, “Ultra-wideline 14N NMR spectroscopy as a probe of molecular dynamics,” Chem. Commun. 46, 6774–6776 (2010).10.1039/C0CC01902J
|
[35] |
R. W. Schurko, “Ultra-wideline solid-state NMR spectroscopy,” Acc. Chem. Res. 46, 1985–1995 (2013).10.1021/ar400045t
|
[36] |
M. Witanowski, L. Stefaniak, and G. A. Webb, “Nitrogen NMR spectroscopy,” in Annual Reports on NMR Spectroscopy, edited by G. Webb (Elsevier, 1993), Vol. 25, pp. 1–82.
|
[37] |
R. S. Macomber and G. S. Harbison, “A complete introduction to modern NMR spectroscopy,” Phys. Today 52(1), 68 (1999).10.1063/1.882558
|
[38] |
D. Simonova, E. Bykova, M. Bykov, T. Kawazoe, A. Simonov, N. Dubrovinskaia, and L. Dubrovinsky, “Structural study of δ-ALOOH up to 29 GPa,” Minerals 10, 1055 (2020).10.3390/min10121055
|
[39] |
A. Sano-Furukawa, T. Hattori, K. Komatsu, H. Kagi, T. Nagai, J. J. Molaison, A. M. dos Santos, and C. A. Tulk, “Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction,” Sci. Rep. 8, 15520 (2018).10.1038/s41598-018-33598-2
|
[40] |
S. B. Pillai, P. K. Jha, A. Padmalal, D. M. Maurya, and L. S. Chamyal, “First principles study of hydrogen bond symmetrization in δ-AlOOH,” J. Appl. Phys. 123, 115901 (2018).10.1063/1.5019586
|
[41] |
P. Cortona, “Hydrogen bond symmetrization and elastic constants under pressure of δ-AlOOH,” J. Phys.: Condens. Matter 29, 325505 (2017).10.1088/1361-648x/aa791f
|
[42] |
A. Sano, E. Ohtani, T. Kondo, N. Hirao, T. Sakai, N. Sata, Y. Ohishi, and T. Kikegawa, “Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary,” Geophys. Res. Lett. 35, L03303, https://doi.org/10.1029/2007gl031718 (2008).10.1029/2007gl031718
|
[43] |
Y. Duan, N. Sun, S. Wang, X. Li, X. Guo, H. Ni, V. B. Prakapenka, and Z. Mao, “Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the deep lower mantle,” Earth Planet. Sci. Lett. 494, 92–98 (2018).10.1016/j.epsl.2018.05.003
|
[44] |
X. Su, C. Zhao, C. Lv, Y. Zhuang, N. Salke, L. Xu, H. Tang, H. Gou, X. Yu, Q. Sun et al., “The effect of iron on the sound velocitoes of δ-AlOOH up to 135 GPa,” Geosci. Front. 12, 937–946 (2021).10.1016/j.gsf.2020.08.012
|
[45] |
H.-k. Mao and W. L. Mao, “Key problems of the four-dimensional Earth system,” Matter Radiat. Extremes 5, 038102 (2020).10.1063/1.5139023
|
[46] |
A. J. Pell, G. Pintacuda, and C. P. Grey, “Paramagnetic NMR in solution and the solid state,” Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2019).10.1016/j.pnmrs.2018.05.001
|
[47] |
H. Yuan and L. Zhang, “In situ determination of crystal structure and chemistry of minerals at Earth’s deep lower mantle conditions,” Matter Radiat. Extremes 2, 117–128 (2017).10.1016/j.mre.2017.01.002
|
[48] |
X.-J. Chen, “Exploring high-temperature superconductivity in hard matter close to structural instability,” Matter Radiat. Extremes 5, 068102 (2020).10.1063/5.0033143
|
[49] |
N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).10.1103/physrevlett.92.187002
|
[50] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
|
[51] |
J. Lv, Y. Sun, H. Liu, and Y. Ma, “Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure,” Matter Radiat. Extremes 5, 068101 (2020).10.1063/5.0033232
|
[52] |
A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
|
[53] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019); arXiv:1808.07695.10.1103/PhysRevLett.122.027001
|
[54] |
E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373–377 (2020).10.1038/s41586-020-2801-z
|
[55] |
V. Struzhkin, B. Li, C. Ji, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736
|
[56] |
P. P. Kong, V. S. Minkov, M. A. Kuzovnikov, S. P. Besedin, A. P. Drozdov, S. Mozaffari, et al.“Superconductivity up to 243 K in yttrium hydrides under high pressure” (unpublished) (2019).
|
[57] |
T. Meier, F. Trybel, G. Criniti, D. Laniel, S. Khandarkhaeva, E. Koemets, T. Fedotenko, K. Glazyrin, M. Hanfland, M. Bykov, G. Steinle-Neumann, N. Dubrovinskaia, and L. Dubrovinsky, “Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance,” Phys. Rev. B 102, 165109 (2020).10.1103/physrevb.102.165109
|
[58] |
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
|
[59] |
L. L. Liu, H. J. Sun, C. Z. Wang, and W. C. Lu, “High-pressure structures of yttrium hydrides,” J. Phys.: Condens. Matter 29, 325401 (2017).10.1088/1361-648X/aa787d
|
[60] |
H.-K. Mao, B. Chen, H. Gou, K. Li, J. Liu, L. Wang, H. Xiao, and W. Yang, “2020—Transformative science in the pressure dimension,” Matter Radiat. Extremes 6, 013001 (2021).10.1063/5.0040607
|
[61] |
C.-S. Yoo, “Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids,” Matter Radiat. Extremes 5, 018202 (2020).10.1063/1.5127897
|
[62] |
B. Monserrat, S. E. Ashbrook, and C. J. Pickard, “Nuclear magnetic resonance spectroscopy as a dynamical structural probe of hydrogen under high pressure,” Phys. Rev. Lett. 122, 135501 (2019); arXiv:1902.10721.10.1103/PhysRevLett.122.135501
|
[63] |
C. Ji, B. Li, W. Liu, J. S. Smith, A. Björling, A. Majumdar, W. Luo, R. Ahuja, J. Shu, J. Wang, S. Sinogeikin, Y. Meng, V. B. Prakapenka, E. Greenberg, R. Xu, X. Huang, Y. Ding, A. Soldatov, W. Yang, G. Shen, W. L. Mao, and H.-K. Mao, “Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen,” Matter Radiat. Extremes 5, 038401 (2020).10.1063/5.0003288
|
[64] |
D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci 24 (2), 100808 (2020). https://doi.org/10.1016/j.cossms.2020.100808
|