Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Astapenko V. A., Rosmej F. B., Khramov E. S.. Scattering of ultrashort laser pulses on plasmons in a Maxwellian plasma[J]. Matter and Radiation at Extremes, 2021, 6(5): 054404. doi: 10.1063/5.0065835
Citation: Astapenko V. A., Rosmej F. B., Khramov E. S.. Scattering of ultrashort laser pulses on plasmons in a Maxwellian plasma[J]. Matter and Radiation at Extremes, 2021, 6(5): 054404. doi: 10.1063/5.0065835

Scattering of ultrashort laser pulses on plasmons in a Maxwellian plasma

doi: 10.1063/5.0065835
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: Egor.Khramov@phystech.edu
  • Received Date: 2021-08-05
  • Accepted Date: 2021-08-23
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • On the basis of equations obtained in the framework of second-order quantum-mechanical perturbation theory, the standard approach to the calculation of scattering radiation probability is extended to the case of ultrashort laser pulses. We investigate the mechanism of the appearance of plasmon peaks in the spectrum of the plasma form factor for different parameters of the problem. For the case in which scattering on plasmons dominates over scattering on electron density fluctuations caused by chaotic thermal motion, we derive analytical expressions describing the scattering probability of ultrashort laser pulses on plasmons. Together with this, we obtain a simple expression connecting the frequency of scattered radiation and the energy transmitted from the incident pulse to plasmon, and vice versa. In considering the scattering probability, our emphasis is on the dependence on the pulse duration. We assess in detail the trends of this dependence for various relations between pulse carrier frequency and plasmon energy.
  • loading
  • [1]
    D. H. Froula, N. C. Luhmann, Jr., J. Sheffield, and S. H. Glenzer, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier, 2011).
    [2]
    A. Akhiezer, I. Prokhoda, and A. Sitenko, “Scattering of electromagnetic waves in a plasma,” Sov. Phys. JETP 6, 576 (1958).
    [3]
    E. E. Salpeter, “Electron density fluctuations in a plasma,” Phys. Rev. 120, 1528 (1960).10.1103/physrev.120.1528
    [4]
    T. Hagfors, “Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere,” J. Geophys. Res. 66, 1699–1712, https://doi.org/10.1029/jz066i006p01699 (1961).10.1029/jz066i006p01699
    [5]
    D. Farley, J. Dougherty, and D. Barron, “A theory of incoherent scattering of radio waves by a plasma II. Scattering in a magnetic field,” Proc. R. Soc. London, Ser. A 263, 238–258 (1961).10.1098/rspa.1961.0158
    [6]
    A. Akhiezer, I. Akhiezer, and A. Sitenko, “Contribution to the theory of plasma fluctuations,” Sov. Phys. JETP 14, 462–468 (1962).
    [7]
    D. F. DuBois and V. Gilinsky, “Incoherent scattering of radiation by plasmas. I. Quantum mechanical calculation of scattering cross sections,” Phys. Rev. 133, A1308 (1964).10.1103/physrev.133.a1308
    [8]
    D. F. Dubois and V. Gilinsky, “Incoherent scattering of radiation by plasmas. II. Effect of Coulomb collisions on classical plasmas,” Phys. Rev. 133, A1317 (1964).10.1103/physrev.133.a1317
    [9]
    H. Röhr, “A 90° laser scattering experiment for measuring temperature and density of ions and electrons in a cold dense theta pinch plasma,” Z. Phys. 209, 295–310 (1968).10.1007/BF01380077
    [10]
    T. P. Hughes, “A new method for the determination of plasma electron temperature and density from Thomson scattering of an optical maser beam,” Nature 194, 268–269 (1962).10.1038/194268b0
    [11]
    T. N. Carlstrom, G. L. Campbell, J. C. DeBoo, R. Evanko, J. Evans, C. M. Greenfield, J. Haskovec, C. L. Hsieh, E. McKee, R. T. Snider et al., “Design and operation of the multipulse Thomson scattering diagnostic on DIII‐D,” Rev. Sci. Instrum. 63, 4901–4906 (1992).10.1063/1.1143545
    [12]
    R. Behn, D. Dicken, J. Hackmann, S. A. Salito, M. R. Siegrist, P. A. Krug, I. Kjelberg, B. Duval, B. Joye, and A. Pochelon, “Ion temperature measurement of tokamak plasmas by collective Thomson scattering of D2O laser radiation,” Phys. Rev. Lett. 62, 2833 (1989).10.1103/physrevlett.62.2833
    [13]
    H. Murmann, S. Götsch, H. Röhr, H. Salzmann, and K. H. Steuer, “The Thomson scattering systems of the ASDEX upgrade tokamak,” Rev. Sci. Instrum. 63, 4941–4943 (1992).10.1063/1.1143504
    [14]
    A. Mooradian and A. L. McWhorter, “Light scattering from plasmons and phonons in ga as,” in Light Scattering Spectra of Solids (Springer, 1969), pp. 297–308.
    [15]
    S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath et al., “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).10.1103/PhysRevLett.98.065002
    [16]
    J. R. Lawrence and D. Waugh, Laser Surface Engineering: Processes and Applications (Elsevier, 2014).
    [17]
    U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).10.1038/nature01938
    [18]
    A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).10.1021/jp001460h
    [19]
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science & Business Media, 2013), Vol. 115.
    [20]
    M. Fushitani and A. Hishikawa, “Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics,” Struct. Dyn. 3, 062602 (2016).10.1063/1.4964775
    [21]
    R. Al-Obaidi, M. Wilke, M. Borgwardt, J. Metje, A. Moguilevski, N. Engel, D. Tolksdorf, A. Raheem, T. Kampen, S. Mähl et al., “Ultrafast photoelectron spectroscopy of solutions: Space-charge effect,” New J. Phys. 17, 093016 (2015).10.1088/1367-2630/17/9/093016
    [22]
    R. Torres, T. Siegel, L. Brugnera, I. Procino, J. G. Underwood, C. Altucci, R. Velotta, E. Springate, C. Froud, I. C. E. Turcu et al., “Extension of high harmonic spectroscopy in molecules by a 1300 nm laser field,” Opt. Express 18, 3174–3180 (2010).10.1364/oe.18.003174
    [23]
    R.-F. Lu, P.-Y. Zhang, and K.-L. Han, “Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields,” Phys. Rev. E 77, 066701 (2008).10.1103/PhysRevE.77.066701
    [24]
    V. S. Yakovlev, J. Gagnon, N. Karpowicz, and F. Krausz, “Attosecond streaking enables the measurement of quantum phase,” Phys. Rev. Lett. 105, 073001 (2010).10.1103/PhysRevLett.105.073001
    [25]
    E. Lindroth, F. Calegari, L. Young, M. Harmand, N. Dudovich, N. Berrah, and O. Smirnova, “Challenges and opportunities in attosecond and XFEL science,” Nat. Rev. Phys. 1, 107–111 (2019).10.1038/s42254-019-0023-9
    [26]
    F. Calegari, A. Trabattoni, A. Palacios, D. Ayuso, M. C. Castrovilli, J. B. Greenwood, P. Decleva, F. Martín, and M. Nisoli, “Charge migration induced by attosecond pulses in bio-relevant molecules,” J. Phys. B: At., Mol. Opt. Phys. 49, 142001 (2016).10.1088/0953-4075/49/14/142001
    [27]
    Y. Kida, R. Kinjo, and T. Tanaka, “Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers,” Appl. Phys. Lett. 109, 151107 (2016).10.1063/1.4964643
    [28]
    T. E. Glover, T. D. Donnelly, E. A. Lipman, A. Sullivan, and R. W. Falcone, “Subpicosecond Thomson scattering measurements of optically ionized helium plasmas,” Phys. Rev. Lett. 73, 78 (1994).10.1103/physrevlett.73.78
    [29]
    K. Ta Phuoc, A. Rousse, M. Pittman, J. P. Rousseau, V. Malka, S. Fritzler, D. Umstadter, and D. Hulin, “X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma,” Phys. Rev. Lett. 91, 195001 (2003).10.1103/physrevlett.91.195001
    [30]
    P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic Press, New York, 1973), Vol. 13.
    [31]
    A. Sitenko, Electromagnetic Fluctuations in Plasma (Elsevier, 2012).
    [32]
    B. S. Tanenbaum, “Continuum theory of Thomson scattering,” Phys. Rev. 171, 215 (1968).10.1103/physrev.171.215
    [33]
    D. H. Froula, J. S. Ross, L. Divol, and S. H. Glenzer, “Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas,” Rev. Sci. Instrum. 77, 10E522 (2006).10.1063/1.2336451
    [34]
    A. Dinklage, T. Klinger, G. Marx, and L. Schweikhard, Plasma Physics: Confinement, Transport and Collective Effects (Springer Science & Business Media, 2005), Vol. 670.
    [35]
    A. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electro-Dynamics (Nauka, Moscow, 1975).
    [36]
    H.-J. Kunze, The Laser as a Tool for Plasma Diagnostics (North-Holland Publishing Company, 1968).
    [37]
    F. B. Rosmej, V. A. Astapenko, and V. Lisitsa, Plasma Atomic Physics (Springer International Publishing, 2020).
    [38]
    V. A. Astapenko, F. B. Rosmej, V. S. Lisitsa, and E. S. Khramov, “Thomson scattering in plasmas: Theory generalization for ultrashort laser pulse effects,” Phys. Plasmas 27, 083301 (2020).10.1063/5.0016064
    [39]
    V. A. Astapenko, “Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range,” J. Exp. Theor. Phys. 112, 193–198 (2011).10.1134/s1063776111010018
    [40]
    V. A. Astapenko, “Scattering of an ultrashort electromagnetic pulse in a plasma,” Plasma Phys. Rep. 37, 972–977 (2011).10.1134/s1063780x11100011
    [41]
    E. Fermi, “Über die theorie des stosses zwischen atomen und elektrisch geladenen teilchen,” Z. Phys. 29, 315 (1924).10.1007/bf03184853
    [42]
    V. A. Astapenko and V. S. Lisitsa, “On the theory of hydrogen atom ionization by ultra-short electromagnetic pulses,” Contrib. Plasma Phys. 55, 522–528 (2015).10.1002/ctpp.201500007
    [43]
    L. Tonks and I. Langmuir, “Note on ‘oscillations in ionized gases’,” Phys. Rev. 33, 990 (1929).10.1103/physrev.33.990
    [44]
    N. Maafa, “Dispersion relation in a plasma with arbitrary degeneracy,” Phys. Scr. 48, 351 (1993).10.1088/0031-8949/48/3/012
    [45]
    L. M. Gorbunov and D. K. Salikhov, “Scattering of nonmonochromatic radiation,” Radiophys. Quantum Electron. 24, 759–763 (1981).10.1007/bf01035933
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (157) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return