Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhang Xiaohua, Zhao Yaping, Li Fei, Yang Guochun. Pressure-induced hydride superconductors above 200 K[J]. Matter and Radiation at Extremes, 2021, 6(6): 068201. doi: 10.1063/5.0065287
Citation: Zhang Xiaohua, Zhao Yaping, Li Fei, Yang Guochun. Pressure-induced hydride superconductors above 200 K[J]. Matter and Radiation at Extremes, 2021, 6(6): 068201. doi: 10.1063/5.0065287

Pressure-induced hydride superconductors above 200 K

doi: 10.1063/5.0065287
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yanggc468@nenu.edu.cn
  • Received Date: 2021-07-31
  • Accepted Date: 2021-09-15
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Although it was proposed many years ago that compressed hydrogen should be a high-temperature superconductor, the goal of room-temperature superconductivity has so far remained out of reach. However, the successful synthesis of the theoretically predicted hydrides H3S and LaH10 with high superconducting transition temperatures TC provides clear guidance for achieving this goal. The existence of these superconducting hydrides also confirms the utility of theoretical predictions in finding high-TC superconductors. To date, numerous hydrides have been studied theoretically or experimentally, especially binary hydrides. Interestingly, some of them exhibit superconductivity above 200 K. To gain insight into these high-TC hydrides (>200 K) and facilitate further research, we summarize their crystal structures, bonding features, and electronic properties, as well as their superconducting mechanism. Based on hydrogen structural motifs, covalent H3S with isolated hydrogen and several clathrate superhydrides (LaH10, YH9, and CaH6) are highlighted. Other predicted hydrides with various H-cages and two-dimensional H motifs are also discussed. Finally, we present a systematic discussion of the common features, current problems, and future challenges of these high-TC hydrides.
  • loading
  • [1]
    H. Kamerlingh Onnes, “The superconductivity of mercury,” Comm. Phys. Lab. Univ. Leiden 122, 122 (1911).
    [2]
    L. Gao, Z. J. Huang, R. L. Meng, J. G. Lin, F. Chen, L. Beauvais, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, “Study of superconductivity in the Hg-Ba-Ca-Cu-O system,” Physica C 213, 261 (1993).10.1016/0921-4534(93)90440-2
    [3]
    L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 4260 (1994).10.1103/physrevb.50.4260
    [4]
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, “Ab initio description of high-temperature superconductivity in dense molecular hydrogen,” Phys. Rev. Lett. 100, 257001 (2008).10.1103/physrevlett.100.257001
    [5]
    L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He, and G. Zou, “Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure,” Solid State Commun. 141, 610 (2007).10.1016/j.ssc.2006.12.029
    [6]
    H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275 (2017).10.1016/j.mre.2017.10.001
    [7]
    J. M. McMahon and D. M. Ceperley, “High-temperature superconductivity in atomic metallic hydrogen,” Phys. Rev. B 84, 144515 (2011).10.1103/physrevb.84.144515
    [8]
    E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-K. Mao, “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
    [9]
    N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748 (1968).10.1103/physrevlett.21.1748
    [10]
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, “Electron-phonon interaction and superconductivity in metallic molecular hydrogen. II. Superconductivity under pressure,” Phys. Rev. B 81, 134506 (2010).10.1103/physrevb.81.134506
    [11]
    J. M. McMahon and D. M. Ceperley, “Erratum: High-temperature superconductivity in atomic metallic hydrogen,” Phys. Rev. B 85, 219902 (2012).10.1103/physrevb.85.219902
    [12]
    N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).10.1103/physrevlett.92.187002
    [13]
    S. Ying, L. Han-Yu, and M. Yan-Ming, “Progress on hydrogen-rich superconductors under high pressure,” Acta Phys. Sin. 70, 017407 (2021).10.7498/aps.70.20202189
    [14]
    J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003
    [15]
    D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020).10.1016/j.cossms.2020.100808
    [16]
    H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, “Hydrogen-rich superconductors at high pressures,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1330 (2018).10.1002/wcms.1330
    [17]
    H. Y. Lv, M. Chen, Y. Feng, W. J. Li, G. H. Zhong, and C. L. Yang, “Superconductivity of light-metal hydrides,” J. Chin. Chem. Soc. 66, 1246 (2019).10.1002/jccs.201800453
    [18]
    U. Pinsook, “In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review,” J. Met., Mater. Miner. 30, 31 (2020).10.14456/jmmm.2020.18
    [19]
    J. Ma, J. Kuang, W. Cui, J. Chen, K. Gao, J. Hao, J. Shi, and Y. Li, “Metal-element-incorporation induced superconducting hydrogen clathrate structure at high pressure,” Chin. Phys. Lett. 38, 027401 (2021).10.1088/0256-307x/38/2/027401
    [20]
    D. Duan, Y. Liu, Y. Ma, Z. Shao, B. Liu, and T. Cui, “Structure and superconductivity of hydrides at high pressures,” Natl. Sci. Rev. 4, 121 (2016).10.1093/nsr/nww029
    [21]
    Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, “Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure,” Phys. Rev. Lett. 123, 097001 (2019).10.1103/PhysRevLett.123.097001
    [22]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, “Room-temperature superconductivity in a carbonaceous sulfur hydride,” Nature 586, 373 (2020).10.1038/s41586-020-2801-z
    [23]
    T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, “Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9,” J. Phys. Chem. C 119, 18007 (2015).10.1021/acs.jpcc.5b03709
    [24]
    S. Zhang, L. Zhu, H. Liu, and G. Yang, “Structure and electronic properties of Fe2SH3 compound under high pressure,” Inorg. Chem. 55, 11434 (2016).10.1021/acs.inorgchem.6b01949
    [25]
    C. Kokail, W. von der Linden, and L. Boeri, “Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system,” Phys. Rev. Mater. 1, 074803 (2017).10.1103/physrevmaterials.1.074803
    [26]
    Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, “Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure,” Phys. Rev. B 96, 144518 (2017).10.1103/physrevb.96.144518
    [27]
    M. Rahm, R. Hoffmann, and N. W. Ashcroft, “Ternary gold hydrides: Routes to stable and potentially superconducting compounds,” J. Am. Chem. Soc. 139, 8740 (2017).10.1021/jacs.7b04456
    [28]
    D. Li, Y. Liu, F.-B. Tian, S.-L. Wei, Z. Liu, D.-F. Duan, B.-B. Liu, and T. Cui, “Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation,” Front. Phys. 13, 137107 (2018).10.1007/s11467-018-0818-7
    [29]
    X. Du, S. Zhang, J. Lin, X. Zhang, A. Bergara, and G. Yang, “Phase diagrams and electronic properties of B-S and H-B-S systems under high pressure,” Phys. Rev. B 100, 134110 (2019).10.1103/physrevb.100.134110
    [30]
    K. S. Grishakov, N. N. Degtyarenko, and E. A. Mazur, “Electron, phonon, and superconducting properties of yttrium and sulfur hydrides under high pressures,” J. Exp. Theor. Phys. 128, 105 (2019).10.1134/s1063776119010072
    [31]
    X. Liang, S. Zhao, C. Shao, A. Bergara, H. Liu, L. Wang, R. Sun, Y. Zhang, Y. Gao, Z. Zhao, X.-F. Zhou, J. He, D. Yu, G. Gao, and Y. Tian, “First-principles study of crystal structures and superconductivity of ternary YSH6 and LaSH6 at high pressures,” Phys. Rev. B 100, 184502 (2019).10.1103/physrevb.100.184502
    [32]
    D. Meng, M. Sakata, K. Shimizu, Y. Iijima, H. Saitoh, T. Sato, S. Takagi, and S.-i. Orimo, “Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure,” Phys. Rev. B 99, 024508 (2019).10.1103/physrevb.99.024508
    [33]
    S. Di Cataldo, W. von der Linden, and L. Boeri, “Phase diagram and superconductivity of calcium borohyrides at extreme pressures,” Phys. Rev. B 102, 014516 (2020).10.1103/physrevb.102.014516
    [34]
    X. Guo, R.-L. Wang, H.-L. Chen, W.-C. Lu, K. M. Ho, and C. Z. Wang, “Stability and superconductivity of TiPHn (n = 1–8) under high pressure,” Phys. Lett. A 384, 126189 (2020).10.1016/j.physleta.2019.126189
    [35]
    X. Li, Y. Xie, Y. Sun, P. Huang, H. Liu, C. Chen, and Y. Ma, “Chemically tuning stability and superconductivity of P–H compounds,” J. Phys. Chem. Lett. 11, 935 (2020).10.1021/acs.jpclett.9b03856
    [36]
    Y. Sun, Y. Tian, B. Jiang, X. Li, H. Li, T. Iitaka, X. Zhong, and Y. Xie, “Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation,” Phys. Rev. B 101, 174102 (2020).10.1103/physrevb.101.174102
    [37]
    Y. Yan, T. Bi, N. Geng, X. Wang, and E. Zurek, “A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure,” J. Phys. Chem. Lett. 11, 9629 (2020).10.1021/acs.jpclett.0c02299
    [38]
    S. Y. Lee, J.-Y. Hwang, J. Park, C. N. Nandadasa, Y. Kim, J. Bang, K. Lee, K. H. Lee, Y. Zhang, Y. Ma, H. Hosono, Y. H. Lee, S.-G. Kim, and S. W. Kim, “Ferromagnetic quasi-atomic electrons in two-dimensional electride,” Nat. Commun. 11, 1526 (2020).10.1038/s41467-020-15253-5
    [39]
    M. I. Eremets and A. P. Drozdov, “High-temperature conventional superconductivity,” Phys.-Usp. 59, 1154 (2016).10.3367/ufne.2016.09.037921
    [40]
    Y. Yao and J. S. Tse, “Superconducting hydrogen sulfide,” Chem. - Eur. J. 24, 1769 (2018).10.1002/chem.201705321
    [41]
    E. Zurek and T. Bi, “High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective,” J. Chem. Phys. 150, 050901 (2019).10.1063/1.5079225
    [42]
    L. Boeri and G. B. Bachelet, “Viewpoint: The road to room-temperature conventional superconductivity,” J. Phys.: Condens. Matter 31, 234002 (2019).10.1088/1361-648x/ab0db2
    [43]
    Y. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. Yao, “Hole-doped room-temperature superconductivity in H3S1−xZx (Z = C, Si),” Mater. Today Phys. 15, 100330 (2020).10.1016/j.mtphys.2020.100330
    [44]
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
    [45]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
    [46]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [47]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [48]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
    [49]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
    [50]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, “Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures,” Phys. Rev. Lett. 126, 117003 (2021).10.1103/physrevlett.126.117003
    [51]
    D. Zhou, D. V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A. R. Oganov, and T. Cui, “Superconducting praseodymium superhydrides,” Sci. Adv. 6, eaax6849 (2020).10.1126/sciadv.aax6849
    [52]
    J. Lv, Y. Sun, H. Liu, and Y. Ma, “Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure,” Matter Radiat. Extremes 5, 068101 (2020).10.1063/5.0033232
    [53]
    V. Struzhkin, B. Li, C. Ji, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, “Superconductivity in La and Y hydrides: Remaining questions to experiment and theory,” Matter Radiat. Extremes 5, 028201 (2020).10.1063/1.5128736
    [54]
    C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX—Evolutionary crystal structure prediction,” Comput. Phys. Commun. 175, 713 (2006).10.1016/j.cpc.2006.07.020
    [55]
    A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comput. Phys. Commun. 184, 1172 (2013).10.1016/j.cpc.2012.12.009
    [56]
    Y. Yao, J. S. Tse, and K. Tanaka, “Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm,” Phys. Rev. B 77, 052103 (2008).10.1103/physrevb.77.052103
    [57]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [58]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
    [59]
    D. C. Lonie and E. Zurek, “XtalOpt: An open-source evolutionary algorithm for crystal structure prediction,” Comput. Phys. Commun. 182, 372 (2011).10.1016/j.cpc.2010.07.048
    [60]
    K. J. Michel and C. Wolverton, “Symmetry building Monte Carlo-based crystal structure prediction,” Comput. Phys. Commun. 185, 1389 (2014).10.1016/j.cpc.2014.01.015
    [61]
    K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H.-T. Wang, and D. Xing, “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817 (2018).10.1016/j.scib.2018.05.027
    [62]
    I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, “Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride,” Nature 578, 66 (2020).10.1038/s41586-020-1955-z
    [63]
    I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, “Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system,” Nature 532, 81 (2016).10.1038/nature17175
    [64]
    N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, “What superconducts in sulfur hydrides under pressure and why,” Phys. Rev. B 91, 060511 (2015).10.1103/physrevb.91.060511
    [65]
    L. Liu, C. Wang, S. Yi, K. W. Kim, J. Kim, and J.-H. Cho, “Microscopic mechanism of room-temperature superconductivity in compressed LaH10,” Phys. Rev. B 99, 140501 (2019).10.1103/physrevb.99.140501
    [66]
    M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, “Crystal structure of the superconducting phase of sulfur hydride,” Nat. Phys. 12, 835 (2016).10.1038/nphys3760
    [67]
    Y. Ge, F. Zhang, and Y. Yao, “First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution,” Phys. Rev. B 93, 224513 (2016).10.1103/physrevb.93.224513
    [68]
    D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, “Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur,” Phys. Rev. B 91, 184511 (2015).10.1103/physrevb.91.184511
    [69]
    D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, “Pressure-induced decomposition of solid hydrogen sulfide,” Phys. Rev. B 91, 180502 (2015).10.1103/physrevb.91.180502
    [70]
    E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, “Superconductivity in diamond,” Nature 428, 542 (2004).10.1038/nature02449
    [71]
    K.-W. Lee and W. E. Pickett, “Superconductivity in boron-doped diamond,” Phys. Rev. Lett. 93, 237003 (2004).10.1103/physrevlett.93.237003
    [72]
    K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu, “Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K,” Phys. Rev. Lett. 101, 107007 (2008).10.1103/physrevlett.101.107007
    [73]
    S. A. J. Kimber, A. Kreyssig, Y.-Z. Zhang, H. O. Jeschke, R. Valentí, F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman, and D. N. Argyriou, “Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2,” Nat. Mater. 8, 471 (2009).10.1038/nmat2443
    [74]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, G. Liu, H. Wang, and Y. Ma, “Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures,” arXiv:2103.16282 (2021).
    [75]
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
    [76]
    S. Yi, C. Wang, H. Jeon, and J.-H. Cho, “Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH10,” Phys. Rev. Mater. 5, 024801 (2021).10.1103/physrevmaterials.5.024801
    [77]
    C. Wang, S. Yi, S. Liu, and J.-H. Cho, “Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure,” Phys. Rev. B 102, 184509 (2020).10.1103/physrevb.102.184509
    [78]
    C. Wang, S. Yi, and J.-H. Cho, “Multiband nature of room-temperature superconductivity in LaH10 at high pressure,” Phys. Rev. B 101, 104506 (2020).10.1103/physrevb.101.104506
    [79]
    S. F. Elatresh, T. Timusk, and E. J. Nicol, “Optical properties of superconducting pressurized LaH10,” Phys. Rev. B 102, 024501 (2020).10.1103/physrevb.102.024501
    [80]
    D. A. Papaconstantopoulos, M. J. Mehl, and P. H. Chang, “High-temperature superconductivity in LaH10,” Phys. Rev. B 101, 060506 (2020).10.1103/physrevb.101.060506
    [81]
    C. Wang, S. Yi, and J.-H. Cho, “Pressure dependence of the superconducting transition temperature of compressed LaH10,” Phys. Rev. B 100, 060502 (2019).10.1103/physrevb.100.060502
    [82]
    M. Kostrzewa, K. M. Szczęśniak, A. P. Durajski, and R. Szczęśniak, “From LaH10 to room–temperature superconductors,” Sci. Rep. 10, 1592 (2020).10.1038/s41598-020-58065-9
    [83]
    Y.-L. Hai, N. Lu, H.-L. Tian, M.-J. Jiang, W. Yang, W.-J. Li, X.-W. Yan, C. Zhang, X.-J. Chen, and G.-H. Zhong, “Cage structure and near room-temperature superconductivity in TbHn (n = 1–12),” J. Phys. Chem. C 125, 3640 (2021).10.1021/acs.jpcc.1c00645
    [84]
    P. Tsuppayakorn-aek, U. Pinsook, W. Luo, R. Ahuja, and T. Bovornratanaraks, “Superconductivity of superhydride CeH10 under high pressure,” Mater. Res. Express 7, 086001 (2020).10.1088/2053-1591/ababc2
    [85]
    D. Wang, H. Zhang, H.-L. Chen, J. Wu, Q.-J. Zang, and W.-C. Lu, “Theoretical study on UH4, UH8 and UH10 at high pressure,” Phys. Lett. A 383, 774 (2019).10.1016/j.physleta.2018.11.048
    [86]
    X.-h. Wang, F.-w. Zheng, Z.-w. Gu, F.-l. Tan, J.-h. Zhao, C.-l. Liu, C.-w. Sun, J. Liu, and P. Zhang, “Hydrogen clathrate structures in uranium hydrides at high pressures,” ACS Omega 6, 3946 (2021).10.1021/acsomega.0c05794
    [87]
    D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36 (2020).10.1016/j.mattod.2019.10.005
    [88]
    X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, “Compressed sodalite-like MgH6 as a potential high-temperature superconductor,” RSC Adv. 5, 59292 (2015).10.1039/c5ra11459d
    [89]
    Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
    [90]
    X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, and N. W. Ashcroft, “High hydrides of scandium under pressure: Potential superconductors,” J. Phys. Chem. C 122, 6298 (2018).10.1021/acs.jpcc.7b12124
    [91]
    I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, 2006832 (2021).10.1002/adma.202006832
    [92]
    H. Xie, D. Duan, Z. Shao, H. Song, Y. Wang, X. Xiao, D. Li, F. Tian, B. Liu, and T. Cui, “High-temperature superconductivity in ternary clathrate YCaH12 under high pressures,” J. Phys.: Condens. Matter 31, 245404 (2019).10.1088/1361-648x/ab09b4
    [93]
    X. Liang, A. Bergara, L. Wang, B. Wen, Z. Zhao, X.-F. Zhou, J. He, G. Gao, and Y. Tian, “Potential high-Tc superconductivity in CaYH12 under pressure,” Phys. Rev. B 99, 100505 (2019).10.1103/physrevb.99.100505
    [94]
    D. V. Semenok, A. G. Kvashnin, I. A. Kruglov, and A. R. Oganov, “Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors,” J. Phys. Chem. Lett. 9, 1920 (2018).10.1021/acs.jpclett.8b00615
    [95]
    K. Tanaka, J. S. Tse, and H. Liu, “Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure,” Phys. Rev. B 96, 100502 (2017).10.1103/physrevb.96.100502
    [96]
    H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (214) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return