Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Burdonov K., Fazzini A., Lelasseux V., Albrecht J., Antici P., Ayoul Y., Beluze A., Cavanna D., Ceccotti T., Chabanis M., Chaleil A., Chen S. N., Chen Z., Consoli F., Cuciuc M., Davoine X., Delaneau J. P., d’Humières E., Dubois J.-L., Evrard C., Filippov E., Freneaux A., Forestier-Colleoni P., Gremillet L., Horny V., Lancia L., Lecherbourg L., Lebas N., Leblanc A., Ma W., Martin L., Negoita F., Paillard J.-L., Papadopoulos D., Perez F., Pikuz S., Qi G., Quéré F., Ranc L., Söderström P.-A., Scisciò M., Sun S., Vallières S., Wang P., Yao W., Mathieu F., Audebert P., Fuchs J.. Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level[J]. Matter and Radiation at Extremes, 2021, 6(6): 064402. doi: 10.1063/5.0065138
Citation: Burdonov K., Fazzini A., Lelasseux V., Albrecht J., Antici P., Ayoul Y., Beluze A., Cavanna D., Ceccotti T., Chabanis M., Chaleil A., Chen S. N., Chen Z., Consoli F., Cuciuc M., Davoine X., Delaneau J. P., d’Humières E., Dubois J.-L., Evrard C., Filippov E., Freneaux A., Forestier-Colleoni P., Gremillet L., Horny V., Lancia L., Lecherbourg L., Lebas N., Leblanc A., Ma W., Martin L., Negoita F., Paillard J.-L., Papadopoulos D., Perez F., Pikuz S., Qi G., Quéré F., Ranc L., Söderström P.-A., Scisciò M., Sun S., Vallières S., Wang P., Yao W., Mathieu F., Audebert P., Fuchs J.. Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level[J]. Matter and Radiation at Extremes, 2021, 6(6): 064402. doi: 10.1063/5.0065138

Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level

doi: 10.1063/5.0065138
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: julien.fuchs@polytechnique.fr
  • Received Date: 2021-07-30
  • Accepted Date: 2021-09-22
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility (located in Saclay, France), which was performed with the first available laser beam (F2), scaled to a nominal power of 1 PW. Under the conditions that were tested, this beam delivered on-target pulses of 10 J average energy and 24 fs duration. Several diagnostics were fielded to assess the performance of the facility. The on-target focal spot and its spatial stability, the temporal intensity profile prior to the main pulse, and the resulting density gradient formed at the irradiated side of solid targets have been thoroughly characterized, with the goal of helping users design future experiments. Emissions of energetic electrons, ions, and electromagnetic radiation were recorded, showing good laser-to-target coupling efficiency and an overall performance comparable to that of similar international facilities. This will be followed in 2022 by a further commissioning stage at the multi-petawatt level.
  • loading
  • [1]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [2]
    F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, e43 (2020).10.1017/hpl.2020.41
    [3]
    D. N. Papadopoulos, P. Ramirez, K. Genevrier, L. Ranc, N. Lebas, A. Pellegrina, C. Le Blanc, P. Monot, L. Martin, J. P. Zou, F. Mathieu, P. Audebert, P. Georges, and F. Druon, “High-contrast 10 fs OPCPA-based front end for multi-PW laser chains,” Opt. Lett. 42, 3530–3533 (2017).10.1364/ol.42.003530
    [4]
    D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux et al., “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).10.1017/hpl.2016.34
    [5]
    J. P. Zou, C. Le Blanc, D. N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez et al., “Design and current progress of the Apollon 10 PW project,” High Power Laser Sci. Eng. 3, e2 (2015).10.1017/hpl.2014.41
    [6]
    D. N. Papadopoulos, J. P. Zou, C. L. Blanc, L. Ranc, F. Druon, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, M. Chabanis, C. Bonnin, J. B. Accary, B. L. Garrec, F. Mathieu, and P. Audebert, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), p. STu3E.4.
    [7]
    D. N. Papadopoulos, J. P. Zou, C. L. Blanc, L. Ranc, F. Druon, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, M. Chabanis, B. L. Garrec, F. Mathieu, and P. Audebert, “The Apollon laser: Commissioning results of the 1 PW beam line,” in High Power Laser Science and Engineering, Suzhou, China, 12–16 April 2021.
    [8]
    J.-L. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave, A. Compant La Fontaine, E. d’Humières, S. Hulin, P. Nicolaï, A. Poyé, and V. T. Tikhonchuk, “Target charging in short-pulse-laser-plasma experiments,” Phys. Rev. E 89, 013102 (2014).10.1103/PhysRevE.89.013102
    [9]
    F. Consoli, V. T. Tikhonchuk, M. Bardon, P. Bradford, D. C. Carroll, J. Cikhardt, M. Cipriani, R. J. Clarke, T. E. Cowan, C. N. Danson, R. De Angelis, M. De Marco, J.-L. Dubois, B. Etchessahar, A. L. Garcia, D. I. Hillier, A. Honsa, W. Jiang, V. Kmetik, J. Krása, Y. Li, F. Lubrano, P. McKenna, J. Metzkes-Ng, A. Poyé, I. Prencipe, P. Ra̧czka, R. A. Smith, R. Vrana, N. C. Woolsey, E. Zemaityte, Y. Zhang, Z. Zhang, B. Zielbauer, and D. Neely, “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Sci. Eng. 8, e22 (2020).10.1017/hpl.2020.13
    [10]
    F. Consoli, P. L. Andreoli, M. Cipriani, G. Cristofari, R. De Angelis, G. Di Giorgio, L. Duvillaret, J. Krása, D. Neely, M. Salvadori, M. Scisciò, R. A. Smith, and V. T. Tikhonchuk, “Sources and space–time distribution of the electromagnetic pulses in experiments on inertial confinement fusion and laser–plasma acceleration,” Philos. Trans. R. Soc., A 379, 20200022 (2020).10.1098/rsta.2020.0022
    [11]
    P. R. Bolton, M. Borghesi, C. Brenner, D. C. Carroll, C. De Martinis, F. Fiorini, A. Flacco, V. Floquet, J. Fuchs, P. Gallegos, D. Giove, J. S. Green, S. Green, B. Jones, D. Kirby, P. McKenna, D. Neely, F. Nuesslin, R. Prasad, S. Reinhardt, M. Roth, U. Schramm, G. G. Scott, S. Ter-Avetisyan, M. Tolley, G. Turchetti, and J. J. Wilkens, “Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams,” Phys. Med. 30, 255–270 (2014).10.1016/j.ejmp.2013.09.002
    [12]
    L. Ranc, C. Le Blanc, N. Lebas, L. Martin, J.-P. Zou, F. Mathieu, C. Radier, S. Ricaud, F. Druon, and D. Papadopoulos, “Improvement in the temporal contrast in the tens of ps range of the multi-PW Apollon laser front-end,” Opt. Lett. 45, 4599–4602 (2020).10.1364/ol.401272
    [13]
    H. Popescu, S. D. Baton, F. Amiranoff, C. Rousseaux, M. R. Le Gloahec, J. J. Santos, L. Gremillet, M. Koenig, E. Martinolli, T. Hall, J. C. Adam, A. Heron, and D. Batani, “Subfemtosecond, coherent, relativistic, and ballistic electron bunches generated at ω0 and 2ω0 in high intensity laser-matter interaction,” Phys. Plasmas 12, 063106 (2005).10.1063/1.1927328
    [14]
    A. Do, M. Briat, S. D. Baton, M. Krumrey, L. Lecherbourg, B. Loupias, F. Pérez, P. Renaudin, C. Rubbelynck, and P. Troussel, “Two-channel high-resolution quasi-monochromatic X-ray imager for Al and Ti plasma,” Rev. Sci. Instrum. 89, 113702 (2018).10.1063/1.5042069
    [15]
    P. Renaudin, L. Duthoit, S. Baton, C. Blancard, A. Chaleil, P. Cossé, G. Faussurier, L. Gremillet, L. Lecherbourg, B. Loupias, and F. Perez, “Radiative cooling of an Al plasma in an Al-Ti mixture heated by an ultraintense laser pulse,” High Energy Density Phys. (to be published), available at, https://hal.archives-ouvertes.fr/hal-02456723/.
    [16]
    A. Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, V. M. Dyakin, G. V. Ivanenkov, A. R. Mingaleev, T. A. Pikuz, V. M. Romanova, and T. A. Shelkovenko, “High-performance x-ray spectroscopic devices for plasma microsources investigations,” Phys. Scr. 50, 333–338 (1994).10.1088/0031-8949/50/4/003
    [17]
    U. Andiel, K. Eidmann, P. Hakel, R. C. Mancini, G. C. Junkel-Vives, J. Abdallah, and K. Witte, “Demonstration of aluminum K-shell line shifts in isochorically heated targets driven by ultrashort laser pulses,” Europhys. Lett. 60, 861–867 (2002).10.1209/epl/i2002-00297-5
    [18]
    M. A. Alkhimova, A. Y. Faenov, I. Y. Skobelev, T. A. Pikuz, M. Nishiuchi, H. Sakaki, A. S. Pirozhkov, A. Sagisaka, N. P. Dover, K. Kondo, K. Ogura, Y. Fukuda, H. Kiriyama, K. Nishitani, T. Miyahara, Y. Watanabe, S. A. Pikuz, M. Kando, R. Kodama, and K. Kondo, “High resolution X-ray spectra of stainless steel foils irradiated by femtosecond laser pulses with ultra-relativistic intensities,” Opt. Express 25, 29501–29511 (2017).10.1364/oe.25.029501
    [19]
    L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Thévenet, J.-L. Vay, G. Bonnaud, P. Martin, H. Vincenti, and F. Quéré, “Identification of coupling mechanisms between ultraintense laser light and dense plasmas,” Phys. Rev. X 9, 011050 (2019).10.1103/physrevx.9.011050
    [20]
    S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).10.1103/physrevlett.110.175001
    [21]
    Y. I. Salamin, S. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427, 41–155 (2006).10.1016/j.physrep.2006.01.002
    [22]
    A. Lévy, T. Ceccotti, P. D’Oliveira, F. Réau, M. Perdrix, F. Quéré, P. Monot, M. Bougeard, H. Lagadec, P. Martin, J.-P. Geindre, and P. Audebert, “Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses,” Opt. Lett. 32, 310–312 (2007).10.1364/ol.32.000310
    [23]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945–2948 (2000).10.1103/physrevlett.85.2945
    [24]
    J. J. Thomson, “XXVI. Rays of positive electricity,” London, Edinburgh Dublin Philos. Mag. J. Sci. 21, 225–249 (1911).10.1080/14786440208637024
    [25]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
    [26]
    T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99, 185002 (2007).10.1103/physrevlett.99.185002
    [27]
    A. Soloviev, K. Burdonov, S. N. Chen, A. Eremeev, A. Korzhimanov, G. V. Pokrovskiy, T. A. Pikuz, G. Revet, A. Sladkov, V. Ginzburg, E. Khazanov, A. Kuzmin, R. Osmanov, I. Shaikin, A. Shaykin, I. Yakovlev, S. Pikuz, M. Starodubtsev, and J. Fuchs, “Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures,” Sci. Rep. 7, 12144 (2017).10.1038/s41598-017-11675-2
    [28]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [29]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
    [30]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/revmodphys.85.751
    [31]
    M. Allen, P. K. Patel, A. Mackinnon, D. Price, S. Wilks, E. Morse, “Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils,” Phys. Rev. Lett. 93, 265004 (2004).10.1103/PhysRevLett.93.265004
    [32]
    J. C. Adam, A. Héron, and G. Laval, “Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas,” Phys. Rev. Lett. 97, 205006 (2006).10.1103/physrevlett.97.205006
    [33]
    J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies, and P. A. Norreys, “Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas,” Phys. Rev. Lett. 100, 015003 (2008).10.1103/PhysRevLett.100.015003
    [34]
    J. Fuchs, C. A. Cecchetti, M. Borghesi, T. Grismayer, E. d’Humières, P. Antici, S. Atzeni, P. Mora, A. Pipahl, L. Romagnani, A. Schiavi, Y. Sentoku, T. Toncian, P. Audebert, and O. Willi, “Laser-foil acceleration of high-energy protons in small-scale plasma gradients,” Phys. Rev. Lett. 99, 015002 (2007).10.1103/PhysRevLett.99.015002
    [35]
    P. Wang, G. Qi, Z. Pan, D. Kong, Y. Shou, J. Liu, Z. Cao, Z. Mei, S. Xu, Z. Liu et al., “Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser–plasma experiments,” High Power Laser Sci. Eng. 9, e29 (2021).10.1017/hpl.2021.18
    [36]
    S. N. Chen, M. Gauthier, M. Bazalova-Carter, S. Bolanos, S. Glenzer, R. Riquier, G. Revet, P. Antici, A. Morabito, A. Propp, M. Starodubtsev, and J. Fuchs, “Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability,” Rev. Sci. Instrum. 87, 073301 (2016).10.1063/1.4954921
    [37]
    V. Lelasseux and J. Fuchs, “Modelling energy deposition in TR image plate detectors for various ion types,” J. Instrum. 15(04), P04002 (2020).10.1088/1748-0221/15/04/P04002
    [38]
    K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Z. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, “Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification Ti:sapphire hybrid laser system,” Opt. Lett. 37, 2868–2870 (2012).10.1364/ol.37.002868
    [39]
    F. Wagner, O. Deppert, C. Brabetz, P. Fiala, A. Kleinschmidt, P. Poth, V. A. Schanz, A. Tebartz, B. Zielbauer, M. Roth, T. Stöhlker, and V. Bagnoud, “Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets,” Phys. Rev. Lett. 116, 205002 (2016).10.1103/physrevlett.116.205002
    [40]
    H. Chen, N. L. Back, T. Bartal, F. N. Beg, D. C. Eder, A. J. Link, A. G. MacPhee, Y. Ping, P. M. Song, A. Throop, and L. Van Woerkom, “Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV,” Rev. Sci. Instrum. 79, 033301 (2008).10.1063/1.2885045
    [41]
    A. Alejo, H. Ahmed, A. Green, S. R. Mirfayzi, M. Borghesi, and S. Kar, “Recent advances in laser-driven neutron sources,” Nuovo Cimento 38, 188 (2015).10.1393/ncc/i2015-15188-8
    [42]
    S. R. Mirfayzi, S. Kar, H. Ahmed, A. G. Krygier, A. Green, A. Alejo, R. Clarke, R. R. Freeman, J. Fuchs, D. Jung, A. Kleinschmidt, J. T. Morrison, Z. Najmudin, H. Nakamura, P. Norreys, M. Oliver, M. Roth, L. Vassura, M. Zepf, and M. Borghesi, “Calibration of time of flight detectors using laser-driven neutron source,” Rev. Sci. Instrum. 86, 073308 (2015).10.1063/1.4923088
    [43]
    Electric Field Sensors, D-Dot free field-radial output (R), Data Sheet Prodyn Technologies; accessed 22 July 2021.
    [44]
    Radiation hardened B-Dot Sensor–Model RB-230(R), Data Sheet Prodyn Technologies; accessed 22 July 2021.
    [45]
    P. Baluns, Data Sheet Prodyn Technologies; accessed 22 July 2021.
    [46]
    C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).10.1038/nphys595
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (353) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return