Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Sui Haonan, Yu Long, Liu Wenbin, Liu Ying, Cheng Yangyang, Duan Huiling. Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review[J]. Matter and Radiation at Extremes, 2022, 7(1): 018201. doi: 10.1063/5.0064557
Citation: Sui Haonan, Yu Long, Liu Wenbin, Liu Ying, Cheng Yangyang, Duan Huiling. Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review[J]. Matter and Radiation at Extremes, 2022, 7(1): 018201. doi: 10.1063/5.0064557

Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review

doi: 10.1063/5.0064557
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: hlduan@pku.edu.cn
  • Received Date: 2021-07-24
  • Accepted Date: 2021-10-28
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals. In the past few decades, the development of experimental techniques and simulation methods has helped to reveal a wealth of information about the nucleation and growth process from its microscopic aspects to macroscopic ones. Powerful and effective theoretical approaches have been developed based on this information and have helped in the analysis of the damage states of structures, thereby making an important contribution to the design of damage-resistant materials. This Review presents a brief overview of theoretical models related to the mechanisms of void nucleation and growth under dynamic loading. Classical work and recent research progress are summarized, together with discussion of some aspects deserving further study.
  • loading
  • [1]
    M. A. Meyers and C. T. Aimone, “Dynamic fracture (spalling) of metals,” Prog. Mater. Sci. 28, 1–96 (1983).10.1016/0079-6425(83)90003-8
    [2]
    G. I. Kanel, “Spall fracture: Methodological aspects, mechanisms and governing factors,” Int. J. Fract. 163, 173–191 (2010).10.1007/s10704-009-9438-0
    [3]
    A. A. Benzerga, J.-B. Leblond, A. Needleman, and V. Tvergaard, “Ductile failure modeling,” Int. J. Fract. 201, 29–80 (2016).10.1007/s10704-016-0142-6
    [4]
    A. Pineau, A. A. Benzerga, and T. Pardoen, “Failure of metals I: Brittle and ductile fracture,” Acta Mater. 107, 424–483 (2016).10.1016/j.actamat.2015.12.034
    [5]
    S. Yao, J. Yu, Y. Cui, X. Pei, Y. Yu, and Q. Wu, “Revisiting the power law characteristics of the plastic shock front under shock loading,” Phys. Rev. Lett. 126, 085503 (2021).10.1103/PhysRevLett.126.085503
    [6]
    D. Terentyev, X. Xiao, A. Dubinko, A. Bakaeva, and H. Duan, “Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation,” J. Mech. Phys. Solids 85, 1–15 (2015).10.1016/j.jmps.2015.08.015
    [7]
    L. Yu, X. Xiao, L. Chen, H. Chu, and H. Duan, “A micromechanical model for nano-metallic-multilayers with helium irradiation,” Int. J. Solids Struct. 102–103, 267–274 (2016).10.1016/j.ijsolstr.2016.09.033
    [8]
    Y. Cui, G. Po, and N. Ghoniem, “Does irradiation enhance or inhibit strain bursts at the submicron scale?,” Acta Mater. 132, 285–297 (2017).10.1016/j.actamat.2017.04.055
    [9]
    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M. L. Taheri, H. Wang, J. Wang, and M. Nastasi, “Radiation damage in nanostructured materials,” Prog. Mater. Sci. 96, 217–321 (2018).10.1016/j.pmatsci.2018.03.002
    [10]
    X. Xiao, D. Terentyev, H. Chu, and H. Duan, “Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: A review and perspective,” Acta Mech. Sin. 36, 397–411 (2020).10.1007/s10409-020-00931-w
    [11]
    L. Chen, W. Liu, L. Yu, Y. Cheng, K. Ren, H. Sui, X. Yi, and H. Duan, “Probabilistic and constitutive models for ductile-to-brittle transition in steels: A competition between cleavage and ductile fracture,” J. Mech. Phys. Solids 135, 103809 (2020).10.1016/j.jmps.2019.103809
    [12]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [13]
    F. Wang, S. Jiang, Y. Ding, S. Liu, J. Yang, S. Li, T. Huang, Z. Cao, Z. Yang, X. Hu, W. Miao, J. Zhang, Z. Wang, G. Yang, R. Yi, Q. Tang, L. Kuang, Z. Li, D. Yang, Y. Li, X. Peng, K. Ren, and B. Zhang, “Recent diagnostic developments at the 100 kJ-level laser facility in China,” Matter Radiat. Extremes 5, 035201 (2020).10.1063/1.5129726
    [14]
    O. Kraft, P. A. Gruber, R. Mönig, and D. Weygand, “Plasticity in confined dimensions,” Annu. Rev. Mater. Res. 40, 293–317 (2010).10.1146/annurev-matsci-082908-145409
    [15]
    W. Liu, Y. Liu, Y. Cheng, L. Chen, L. Yu, X. Yi, and H. Duan, “Unified model for size-dependent to size-independent transition in yield strength of crystalline metallic materials,” Phys. Rev. Lett. 124, 235501 (2020).10.1103/PhysRevLett.124.235501
    [16]
    T. Antoun, L. Seaman, D. Curran, G. Kanel, S. Razorenov, and A. Utkin, Spall Fracture (Springer, 2003).
    [17]
    D. Curran, L. Seaman, and D. A. Shockey, “Dynamic failure of solids,” Phys. Rep. 147, 253–388 (1987).10.1016/0370-1573(87)90049-4
    [18]
    R. Raj and M. F. Ashby, “Intergranular fracture at elevated-temperature,” Acta Metall. 23, 653–666 (1975).10.1016/0001-6160(75)90047-4
    [19]
    C. Reina, J. Marian, and M. Ortiz, “Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals,” Phys. Rev. B 84, 104117 (2011).10.1103/physrevb.84.104117
    [20]
    V. A. Lubarda, M. S. Schneider, D. H. Kalantar, B. A. Remington, and M. A. Meyers, “Void growth by dislocation emission,” Acta Mater. 52, 1397–1408 (2004).10.1016/j.actamat.2003.11.022
    [21]
    J. W. Wilkerson and K. T. Ramesh, “A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading,” J. Mech. Phys. Solids 86, 94–116 (2016).10.1016/j.jmps.2015.10.005
    [22]
    D. A. Shockey, L. Seaman, and D. R. Curran, “The influence of microstructural features on dynamic fracture,” in Metallurgical Effects at High Strain Rates, edited by R. Rohde, B. Butcher, J. Holland, and C. Karnes (Plenum Press, New York, 1973), pp. 473–499.
    [23]
    T.-J. Chuang, K. I. Kagawa, J. R. Rice, and L. B. Sills, “Non-equilibrium models for diffusive cavitation of grain interfaces,” Acta Metall. 27, 265–284 (1979).10.1016/0001-6160(79)90021-x
    [24]
    M. F. Ashby, “Work hardening of dispersion-hardened crystals,” Philos. Mag. 14, 1157–1178 (1966).10.1080/14786436608224282
    [25]
    N. A. Pedrazas, D. L. Worthington, D. A. Dalton, P. A. Sherek, S. P. Steuck, H. J. Quevedo, A. C. Bernstein, E. M. Taleff, and T. Ditmire, “Effects of microstructure and composition on spall fracture in aluminum,” Mater. Sci. Eng., A 536, 117–123 (2012).10.1016/j.msea.2011.12.083
    [26]
    K. Tanaka, T. Mori, and T. Nakamura, “Cavity formation at interface of a spherical inclusion in a plastically deformed matrix,” Philos. Mag. 21, 267–279 (1970).10.1080/14786437008238415
    [27]
    S. H. Goods and L. M. Brown, “Overview No. 1: The nucleation of cavities by plastic deformation,” Acta Metall. 27, 1–15 (1979).10.1016/0001-6160(79)90051-8
    [28]
    [29]
    A. S. Argon and J. Im, “Separation of second-phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging-steel in plastic straining,” Metall. Trans. A 6, 839–851 (1975).10.1007/bf02672307
    [30]
    T. Inoue and S. Kinoshita, “Three stages of ductile fracture process and criteria of void initiation in spheroidized and ferrite/pearlite steels,” Trans. Iron Steel Inst. Jpn. 17, 523–531 (1977).10.2355/isijinternational1966.17.523
    [31]
    [32]
    L. M. Brown and W. M. Stobbs, “The work-hardening of copper-silica V. Equilibrium plastic relaxation by secondary dislocations,” Philos. Mag. 34, 351–372 (1976).10.1080/14786437608222028
    [33]
    X. G. Jiang, J. Z. Cui, and L. X. Ma, “A cavity nucleation model during high temperature creep deformation of metals,” Acta Metall. Mater. 41, 539–542 (1993).10.1016/0956-7151(93)90083-5
    [34]
    X.-G. Jiang, J. C. Earthman, and F. A. Mohamed, “Cavitation and cavity-induced fracture during superplastic deformation,” J. Mater. Sci. 29, 5499–5514 (1994).10.1007/bf00349941
    [35]
    L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S. N. Luo, S. Greenfield, D. Byler, D. Paisley, K. J. McClellan, A. Koskelo, and R. Dickerson, “Statistics of weak grain boundaries for spall damage in polycrystalline copper,” Scr. Mater. 63, 1065–1068 (2010).10.1016/j.scriptamat.2010.08.003
    [36]
    A. G. Perez-Bergquist, E. K. Cerreta, C. P. Trujillo, F. Cao, and G. T. Gray III, “Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal,” Scr. Mater. 65, 1069–1072 (2011).10.1016/j.scriptamat.2011.09.015
    [37]
    E. K. Cerreta, J. P. Escobedo, A. Perez-Bergquist, D. D. Koller, C. P. Trujillo, G. T. Gray III, C. Brandl, and T. C. Germann, “Early stage dynamic damage and the role of grain boundary type,” Scr. Mater. 66, 638–641 (2012).10.1016/j.scriptamat.2012.01.051
    [38]
    S. J. Fensin, E. K. Cerreta, G. T. Gray III, and S. M. Valone, “Why are some interfaces in materials stronger than others?,” Sci. Rep. 4, 5461 (2014).10.1038/srep05461
    [39]
    J. Chen, E. N. Hahn, A. M. Dongare, and S. J. Fensin, “Understanding and predicting damage and failure at grain boundaries in BCC Ta,” J. Appl. Phys. 126, 165902 (2019).10.1063/1.5111837
    [40]
    J. Chen and S. J. Fensin, “Associating damage nucleation and distribution with grain boundary characteristics in Ta,” Scr. Mater. 187, 329–334 (2020).10.1016/j.scriptamat.2020.06.035
    [41]
    S. J. Fensin, J. P. Escobedo-Diaz, C. Brandl, E. K. Cerreta, G. T. Gray III, T. C. Germann, and S. M. Valone, “Effect of loading direction on grain boundary failure under shock loading,” Acta Mater. 64, 113–122 (2014).10.1016/j.actamat.2013.11.026
    [42]
    E. T. Seppälä, J. Belak, and R. E. Rudd, “Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study,” Phys. Rev. B 69, 134101 (2004).10.1103/physrevb.69.134101
    [43]
    S. Traiviratana, E. M. Bringa, D. J. Benson, and M. A. Meyers, “Void growth in metals: Atomistic calculations,” Acta Mater. 56, 3874–3886 (2008).10.1016/j.actamat.2008.03.047
    [44]
    R. E. Rudd, “Void growth in bcc metals simulated with molecular dynamics using the Finnis–Sinclair potential,” Philos. Mag. 89, 3133–3161 (2009).10.1080/14786430903222529
    [45]
    L. Wang, J. Zhou, Y. Liu, S. Zhang, Y. Wang, and W. Xing, “Nanovoid growth in nanocrystalline metal by dislocation shear loop emission,” Mater. Sci. Eng., A 528, 5428–5434 (2011).10.1016/j.msea.2011.03.074
    [46]
    V. S. Krasnikov and A. E. Mayer, “Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: Molecular dynamics simulations and continuum modeling,” Int. J. Plast. 74, 75–91 (2015).10.1016/j.ijplas.2015.06.007
    [47]
    Y. Cui and Z. Chen, “Material transport via the emission of shear loops during void growth: A molecular dynamics study,” J. Appl. Phys. 119, 225102 (2016).10.1063/1.4953089
    [48]
    S. Chandra, M. K. Samal, V. M. Chavan, and S. Raghunathan, “Void growth in single crystal copper-an atomistic modeling and statistical analysis study,” Philos. Mag. 98, 577–604 (2017).10.1080/14786435.2017.1412591
    [49]
    Y. Cui, Z. Chen, and Y. Ju, “Fundamental insights into the mass transfer via full dislocation loops due to alternative surface cuts,” Int. J. Solids Struct. 161, 42–54 (2019).10.1016/j.ijsolstr.2018.11.005
    [50]
    A. M. Cuitiño and M. Ortiz, “Ductile fracture by vacancy condensation in f.c.c. single crystals,” Acta Mater. 44, 427–436 (1996).10.1016/1359-6454(95)00220-0
    [51]
    E. M. Bringa, S. Traiviratana, and M. A. Meyers, “Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects,” Acta Mater. 58, 4458–4477 (2010).10.1016/j.actamat.2010.04.043
    [52]
    V. A. Lubarda, “Emission of dislocations from nanovoids under combined loading,” Int. J. Plast. 27, 181–200 (2011).10.1016/j.ijplas.2010.04.005
    [53]
    H. Sui, L. Yu, W. Liu, L. Chen, and H. Duan, “Three dimensional dislocation-loop emission criterion for void growth of ductile metals,” Int. J. Plast. 131, 102746 (2020).10.1016/j.ijplas.2020.102746
    [54]
    D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, 1964).
    [55]
    T. Tsuru and Y. Shibutani, “Initial yield process around a spherical inclusion in single-crystalline aluminium,” J. Phys. D: Appl. Phys. 40, 2183–2188 (2007).10.1088/0022-3727/40/7/049
    [56]
    V. V. Bulatov, W. G. Wolfer, and M. Kumar, “Shear impossibility: Comments on ‘Void growth by dislocation emission’ and ‘Void growth in metals: Atomistic calculations,’” Scr. Mater. 63, 144–147 (2010).10.1016/j.scriptamat.2010.03.001
    [57]
    P.-A. Geslin, B. Appolaire, and A. Finel, “Investigation of coherency loss by prismatic punching with a nonlinear elastic model,” Acta Mater. 71, 80–88 (2014).10.1016/j.actamat.2014.03.005
    [58]
    L. B. Munday, J. C. Crone, and J. Knap, “The role of free surfaces on the formation of prismatic dislocation loops,” Scr. Mater. 103, 65–68 (2015).10.1016/j.scriptamat.2015.03.009
    [59]
    L. B. Munday, J. C. Crone, and J. Knap, “Prismatic and helical dislocation loop generation from defects,” Acta Mater. 103, 217–228 (2016).10.1016/j.actamat.2015.09.056
    [60]
    [61]
    D. C. Ahn, P. Sofronis, and R. Minich, “On the micromechanics of void growth by prismatic-dislocation loop emission,” J. Mech. Phys. Solids 54, 735–755 (2006).10.1016/j.jmps.2005.10.011
    [62]
    D. C. Ahn, P. Sofronis, M. Kumar, J. Belak, and R. Minich, “Void growth by dislocation-loop emission,” J. Appl. Phys. 101, 063514 (2007).10.1063/1.2710346
    [63]
    F. A. McClintock, “A criterion for ductile fracture by the growth of holes,” J. Appl. Mech. 35, 363–371 (1968).10.1115/1.3601204
    [64]
    J. R. Rice and D. M. Tracey, “On the ductile enlargement of voids in triaxial stress fields,” J. Mech. Phys. Solids 17, 201–217 (1969).10.1016/0022-5096(69)90033-7
    [65]
    J. M. Ball, “Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,” Philos. Trans. R. Soc. London, Ser. A 306, 557–611 (1982).10.1098/rsta.1982.0095
    [66]
    Y. Huang, J. W. Hutchinson, and V. Tvergaard, “Cavitation instabilities in elastic plastic solids,” J. Mech. Phys. Solids 39, 223–241 (1991).10.1016/0022-5096(91)90004-8
    [67]
    V. Tvergaard, Y. Huang, and J. W. Hutchinson, “Cavitation instabilities in a power hardening elastic-plastic solid,” Eur. J. Mech.: A/Solids 11, 215–231 (1992).
    [68]
    Z. P. Huang and J. Wang, “Nonlinear mechanics of solids containing isolated voids,” Appl. Mech. Rev. 59, 210–229 (2006).10.1115/1.2192812
    [69]
    A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Technol. 99, 2–15 (1977).10.1115/1.3443401
    [70]
    M. Ortiz and A. Molinari, “Effect of strain-hardening and rate sensitivity on the dynamic growth of a void in a plastic material,” J. Appl. Mech. 59, 48–53 (1992).10.1115/1.2899463
    [71]
    X. Y. Wu, K. T. Ramesh, and T. W. Wright, “The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading,” J. Mech. Phys. Solids 51, 1–26 (2003).10.1016/s0022-5096(02)00079-0
    [72]
    X. Y. Wu, K. T. Ramesh, and T. W. Wright, “The effects of thermal softening and heat conduction on the dynamic growth of voids,” Int. J. Solids Struct. 40, 4461–4478 (2003).10.1016/s0020-7683(03)00214-2
    [73]
    X. Y. Wu, K. T. Ramesh, and T. W. Wright, “The coupled effects of plastic strain gradient and thermal softening on the dynamic growth of voids,” J. Mech. Phys. Solids 40, 6633–6651 (2003).10.1016/s0020-7683(03)00439-6
    [74]
    A. Molinari and T. W. Wright, “A physical model for nucleation and early growth of voids in ductile materials under dynamic loading,” J. Mech. Phys. Solids 53, 1476–1504 (2005).10.1016/j.jmps.2005.02.010
    [75]
    C. Czarnota, S. Mercier, and A. Molinari, “Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum,” Int. J. Fract. 141, 177–194 (2006).10.1007/s10704-006-0070-y
    [76]
    C. Czarnota, N. Jacques, S. Mercier, and A. Molinari, “Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum,” J. Mech. Phys. Solids 56, 1624–1650 (2008).10.1016/j.jmps.2007.07.017
    [77]
    H. Trumel, F. Hild, G. Roy, Y.-P. Pellegrini, and C. Denoual, “On probabilistic aspects in the dynamic degradation of ductile materials,” J. Mech. Phys. Solids 57, 1980–1998 (2009).10.1016/j.jmps.2009.07.001
    [78]
    N. Jacques, S. Mercier, and A. Molinari, “Effects of microscale inertia on dynamic ductile crack growth,” J. Mech. Phys. Solids 60, 665–690 (2012).10.1016/j.jmps.2011.12.010
    [79]
    F.-G. Zhang, H.-Q. Zhou, J. Hu, J.-L. Shao, G.-C. Zhang, T. Hong, and B. He, “Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper,” Chin. Phys. B 21, 094601 (2012).10.1088/1674-1056/21/9/094601
    [80]
    J. W. Wilkerson and K. T. Ramesh, “Unraveling the anomalous grain size dependence of cavitation,” Phys. Rev. Lett. 117, 215503 (2016).10.1103/physrevlett.117.215503
    [81]
    D. Versino and C. A. Bronkhorst, “A computationally efficient ductile damage model accounting for nucleation and micro-inertia at high triaxialities,” Comput. Methods Appl. Mech. Eng. 333, 395–420 (2018).10.1016/j.cma.2018.01.028
    [82]
    R. A. Austin and D. L. McDowell, “A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates,” Int. J. Plast. 27, 1–24 (2011).10.1016/j.ijplas.2010.03.002
    [83]
    J. W. Wilkerson, “On the micromechanics of void dynamics at extreme rates,” Int. J. Plast. 95, 21–42 (2017).10.1016/j.ijplas.2017.03.008
    [84]
    V. Monchiet, O. Cazacu, E. Charkaluk, and D. Kondo, “Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids,” Int. J. Plast. 24, 1158–1189 (2008).10.1016/j.ijplas.2007.08.008
    [85]
    S. M. Keralavarma and A. A. Benzerga, “A constitutive model for plastically anisotropic solids with non-spherical voids,” J. Mech. Phys. Solids 58, 874–901 (2010).10.1016/j.jmps.2010.03.007
    [86]
    S. M. Keralavarma, S. Hoelscher, and A. A. Benzerga, “Void growth and coalescence in anisotropic plastic solids,” Int. J. Solids Struct. 48, 1696–1710 (2011).10.1016/j.ijsolstr.2011.02.020
    [87]
    X. Han, J. Besson, S. Forest, B. Tanguy, and S. Bugat, “A yield function for single crystals containing voids,” Int. J. Solids Struct. 50, 2115–2131 (2013).10.1016/j.ijsolstr.2013.02.005
    [88]
    J. Paux, L. Morin, R. Brenner, and D. Kondo, “An approximate yield criterion for porous single crystals,” Eur. J. Mech.: A/Solids 51, 1–10 (2015).10.1016/j.euromechsol.2014.11.004
    [89]
    M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux, Recent Extensions of Gurson’s Model for Porous Ductile Metals (Springer, 1997).
    [90]
    V. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fract. 18, 237–252 (1982).10.1007/bf00015686
    [91]
    V. Tvergaard and A. Needleman, “Analysis of the cup-cone fracture in a round tensile bar,” Acta Metall. 32, 157–169 (1984).10.1016/0001-6160(84)90213-x
    [92]
    A. Needleman and V. Tvergaard, “An analysis of ductile rupture in notched bars,” J. Mech. Phys. Solids 32, 461–490 (1984).10.1016/0022-5096(84)90031-0
    [93]
    A. M. Rajendran and I. M. Fyfe, “Inertia effects on the ductile failure of thin rings,” J. Appl. Mech. 49, 31–36 (1982).10.1115/1.3162066
    [94]
    J. N. Johnson and F. L. Addessio, “Tensile plasticity and ductile fracture,” J. Appl. Phys. 64, 6699–6712 (1988).10.1063/1.342000
    [95]
    M. J. Worswick and R. J. Pick, “Void growth and coalescence during high-velocity impact,” Mech. Mater. 19, 293–309 (1995).10.1016/0167-6636(94)00041-e
    [96]
    A. Needleman and V. Tvergaard, “An analysis of dynamic, ductile crack-growth in a double edge cracked specimen,” Int. J. Fract. 49, 41–67 (1991).10.1007/bf00013502
    [97]
    A. Needleman and V. Tvergaard, “A numerical study of void distribution effects on dynamic, ductile crack-growth,” Eng. Fract. Mech. 38, 157–173 (1991).10.1016/0013-7944(91)90079-g
    [98]
    A. Needleman and V. Tvergaard, “Mesh effects in the analysis of dynamic ductile crack-growth,” Eng. Fract. Mech. 47, 75–91 (1994).10.1016/0013-7944(94)90239-9
    [99]
    Z.-P. Wang and Q. Jiang, “A yield criterion for porous ductile media at high strain rate,” J. Appl. Mech. 64, 503–509 (1997).10.1115/1.2788921
    [100]
    Z.-P. Wang, “Void-containing nonlinear materials subject to high-rate loading,” J. Appl. Phys. 81, 7213–7227 (1997).10.1063/1.365320
    [101]
    A. Molinari and S. Mercier, “Micromechanical modelling of porous materials under dynamic loading,” J. Mech. Phys. Solids 49, 1497–1516 (2001).10.1016/s0022-5096(01)00003-5
    [102]
    [103]
    V. E. Fortov, V. V. Kostin, and S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).10.1063/1.349087
    [104]
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, K. Baumung, H. U. Karow, and V. Licht, “Spallations near the ultimate strength of solids,” AIP Conf. Proc. 309, 1043–1046 (1994).10.1063/1.46273
    [105]
    G. I. Kanel, S. V. Razorenov, A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, “Spall fracture properties of aluminum and magnesium at high temperatures,” J. Appl. Phys. 79, 8310–8317 (1996).10.1063/1.362542
    [106]
    E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I. B. Goldberg, N. Eliaz, and D. Eliezer, “An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1,” J. Appl. Phys. 83, 4004–4011 (1998).10.1063/1.367222
    [107]
    E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horovitz, S. Maman, I. B. Goldberg, and D. Eliezer, “Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state,” Appl. Phys. Lett. 76, 1555–1557 (2000).10.1063/1.126094
    [108]
    G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, “Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point,” J. Appl. Phys. 90, 136–143 (2001).10.1063/1.1374478
    [109]
    D. A. Dalton, J. Brewer, A. C. Bernstein, W. Grigsby, D. Milathianaki, E. Jackson, R. Adams, P. Rambo, J. Schwarz, A. Edens, M. Geissel, I. Smith, E. Taleff, and T. Ditmire, “Laser-induced spall of aluminum and aluminum alloys at high strain rates,” AIP Conf. Proc. 955, 501 (2007).10.1063/1.2833119
    [110]
    J. P. Cuq-Lelandais, M. Boustie, L. Berthe, T. de Rességuier, P. Combis, J. P. Colombier, M. Nivard, and A. Claverie, “Spallation generated by femtosecond laser driven shocks in thin metallic targets,” J. Phys. D: Appl. Phys. 42, 065402 (2009).10.1088/0022-3727/42/6/065402
    [111]
    J. W. Wilkerson and K. T. Ramesh, “A dynamic void growth model governed by dislocation kinetics,” J. Mech. Phys. Solids 70, 262–280 (2014).10.1016/j.jmps.2014.05.018
    [112]
    J. T. Lloyd, J. D. Clayton, R. Becker, and D. L. McDowell, “Simulation of shock wave propagation in single crystal and polycrystalline aluminum,” Int. J. Plast. 60, 118–144 (2014).10.1016/j.ijplas.2014.04.012
    [113]
    D. J. Luscher, F. L. Addessio, M. J. Cawkwell, and K. J. Ramos, “A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine,” J. Mech. Phys. Solids 98, 63–86 (2017).10.1016/j.jmps.2016.09.005
    [114]
    T. Nguyen, D. J. Luscher, and J. W. Wilkerson, “A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals,” J. Mech. Phys. Solids 108, 1–29 (2017).10.1016/j.jmps.2017.07.020
    [115]
    T. Nguyen, D. J. Luscher, and J. W. Wilkerson, “A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength,” J. Mech. Phys. Solids 137, 103875 (2020).10.1016/j.jmps.2020.103875
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (110) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return