Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Dai Ya-Nan, Shen Bai-Fei, Li Jian-Xing, Shaisultanov Rashid, Hatsagortsyan Karen Z., Keitel Christoph H., Chen Yue-Yue. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7(1): 014401. doi: 10.1063/5.0063633
Citation: Dai Ya-Nan, Shen Bai-Fei, Li Jian-Xing, Shaisultanov Rashid, Hatsagortsyan Karen Z., Keitel Christoph H., Chen Yue-Yue. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7(1): 014401. doi: 10.1063/5.0063633

Photon polarization effects in polarized electron–positron pair production in a strong laser field

doi: 10.1063/5.0063633
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yueyuechen@shnu.edu.cn
  • Received Date: 2021-07-16
  • Accepted Date: 2021-10-08
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • Deep understanding of the impact of photon polarization on pair production is essential for the efficient generation of laser-driven polarized positron beams and demands a complete description of polarization effects in strong-field QED processes. Employing fully polarization-resolved Monte Carlo simulations, we investigate correlated photon and electron (positron) polarization effects in the multiphoton Breit–Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We show that the polarization of ee+ pairs is degraded by 35% when the polarization of the intermediate photon is resolved, accompanied by an ∼13% decrease in the pair yield. Moreover, in this case, the polarization direction of energetic positrons at small deflection angles can even be reversed when high-energy photons with polarization parallel to the laser electric field are involved.
  • loading
  • [1]
    [2]
    Q. Collaboration et al., “First determination of the weak charge of the proton,” Phys. Rev. Lett. 111, 141803 (2013).10.1103/PhysRevLett.111.141803
    [3]
    B. A. Mecking, G. Adams, S. Ahmad, E. Anciant, M. Anghinolfi, B. Asavapibhop, G. Asryan, G. Audit, T. Auger, H. Avakian et al., “The CEBAF large acceptance spectrometer (CLAS),” Nucl. Instrum. Methods Phys. Res., Sect. A 503, 513–553 (2003).10.1016/S0168-9002(03)01001-5
    [4]
    A. Sokolov and I. Ternov, “On polarization and spin effects in the theory of synchrotron radiation,” Sov. Phys.-Dokl. 8, 1203–1205 (1964).10.1007/BF00820300
    [5]
    I. M. Ternov, “Synchrotron radiation,” Phys.-Usp. 38, 409 (1995).10.1070/pu1995v038n04abeh000082
    [6]
    V. N. Baier and V. M. Katkov, “Radiational polarization of electrons in inhomogeneous magnetic field,” Phys. Lett. A 24, 327–329 (1967).10.1016/0375-9601(67)90608-1
    [7]
    V. Baier, “Radiative polarization of electrons in storage rings,” Sov. Phys.-Dokl. 14, 695 (1972).10.1070/pu1972v014n06abeh004751
    [8]
    Y. S. Derbenev, and A. Kondratenko, “Polarization kinetics of particles in storage rings,” Sov. Phys.-JETP 37, 968 (1973).10.1007/BF01391507
    [9]
    I. Sakai, T. Aoki, K. Dobashi, M. Fukuda, A. Higurashi, T. Hirose, T. Iimura, Y. Kurihara, T. Okugi, T. Omori et al., “Production of high brightness γ rays through backscattering of laser photons on high-energy electrons,” Phys. Rev. Spec. Top.-Accel. Beams 6, 091001 (2003).10.1103/physrevstab.6.091001
    [10]
    T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito et al., “Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation,” Phys. Rev. Lett. 96, 114801 (2006).10.1103/physrevlett.96.114801
    [11]
    X. Ji, “Deeply virtual compton scattering,” Phys. Rev. D 55, 7114 (1997).10.1103/physrevd.55.7114
    [12]
    A. P. Potylitsin, “Production of polarized positrons through interaction of longitudinally polarized electrons with thin targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 398, 395–398 (1997).10.1016/s0168-9002(97)00898-x
    [13]
    Y. F. Li, R. Shaisultanov, Y. Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J. X. Li, “Polarized ultrashort brilliant multi-gev γ rays via single-shot laser-electron interaction,” Phys. Rev. Lett. 124, 014801 (2020).10.1103/PhysRevLett.124.014801
    [14]
    C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52
    [15]
    V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, et al., “Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).10.1364/oe.16.002109
    [16]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [17]
    [18]
    [19]
    [20]
    W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002
    [21]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. De Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. Van Tilborg et al., “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/PhysRevLett.122.084801
    [22]
    V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497–617 (1985).10.1007/bf01120220
    [23]
    F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams,” Phys. Lett. B 800, 135120 (2020).10.1016/j.physletb.2019.135120
    [24]
    Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan, and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).10.1103/physrevlett.123.174801
    [25]
    Y. F. Li, Y. Y. Chen, W. M. Wang, and H. S. Hu, “Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field,” Phys. Rev. Lett. 125, 044802 (2020).10.1103/PhysRevLett.125.044802
    [26]
    D. Seipt and B. King, “Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear compton and breit-wheeler processes,” Phys. Rev. A 102, 052805 (2020).10.1103/physreva.102.052805
    [27]
    A. Ilderton, B. King, and S. Tang, “Loop spin effects in intense background fields,” Phys. Rev. D 102, 076013 (2020).10.1103/physrevd.102.076013
    [28]
    V. Dinu and G. Torgrimsson, “Approximating higher-order nonlinear QED processes with first-order building blocks,” Phys. Rev. D 102, 016018 (2020).10.1103/physrevd.102.016018
    [29]
    G. Torgrimsson, “Loops and polarization in strong-field QED,” New J. Phys. 23, 065001 (2021).10.1088/1367-2630/abf274
    [30]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402 (2019).10.1103/physreva.100.061402
    [31]
    H.-H. Song, W.-M. Wang, J.-X. Li, Y.-F. Li, and Y.-T. Li, “Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse,” Phys. Rev. A 100, 033407 (2019).10.1103/physreva.100.033407
    [32]
    Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
    [33]
    B. King, N. Elkina, and H. Ruhl, “Photon polarization in electron-seeded pair-creation cascades,” Phys. Rev. A 87, 042117 (2013).10.1103/physreva.87.042117
    [34]
    F. Wan, Y. Wang, R.-T. Guo, Y.-Y. Chen, R. Shaisultanov, Z.-F. Xu, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “High-energy γ-photon polarization in nonlinear breit-wheeler pair production and γ polarimetry,” Phys. Rev. Res. 2, 032049 (2020).10.1103/physrevresearch.2.032049
    [35]
    [36]
    I. Gol’dman, “Intensity effects in compton scattering,” Sov. Phys.-JETP 19, 954 (1964).10.1016/0031-9163(64)90728-0
    [37]
    A. Nikishov and V. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field. I,” Sov. Phys.-JETP 19, 529–541 (1964).
    [38]
    G. L. Kotkin, V. G. Serbo, and V. I. Telnov, “Electron (positron) beam polarization by Compton scattering on circularly polarized laser photons,” Phys. Rev. Spec. Top.-Accel. Beams 6, 011001 (2003).10.1103/physrevstab.6.011001
    [39]
    D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave,” Eur. Phys. J. C 36, 127–145 (2004).10.1140/epjc/s2004-01861-x
    [40]
    D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in e+e− pair productionby a photon in the field of a strong laser wave,” Eur. Phys. J. C 40, 27–40 (2005).10.1140/epjc/s2005-02125-1
    [41]
    C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys. 260, 273–285 (2014).10.1016/j.jcp.2013.12.007
    [42]
    N. Elkina, A. Fedotov, I. Y. Kostyukov, M. Legkov, N. Narozhny, E. Nerush, and H. Ruhl, “QED cascades induced by circularly polarized laser fields,” Phys. Rev. Spec. Top.-Accel. Beams 14, 054401 (2011).10.1103/physrevstab.14.054401
    [43]
    D. G. Green and C. N. Harvey, “SIMLA: Simulating particle dynamics in intense laser and other electromagnetic fields via classical and quantum electrodynamics,” Comput. Phys. Commun. 192, 313–321 (2015).10.1016/j.cpc.2015.02.030
    [44]
    V. Katkov, V. M. Strakhovenko et al., Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, 1998).
    [45]
    V. Dinu, C. Harvey, A. Ilderton, M. Marklund, and G. Torgrimsson, “Quantum radiation reaction: From interference to incoherence,” Phys. Rev. Lett. 116, 044801 (2016).10.1103/PhysRevLett.116.044801
    [46]
    A. Di Piazza, M. Tamburini, S. Meuren, and C. Keitel, “Implementing nonlinear compton scattering beyond the local-constant-field approximation,” Phys. Rev. A 98, 012134 (2018).10.1103/physreva.98.012134
    [47]
    A. Ilderton, B. King, and D. Seipt, “Extended locally constant field approximation for nonlinear compton scattering,” Phys. Rev. A 99, 042121 (2019).10.1103/physreva.99.042121
    [48]
    T. Podszus and A. Di Piazza, “High-energy behavior of strong-field QED in an intense plane wave,” Phys. Rev. D 99, 076004 (2019).10.1103/physrevd.99.076004
    [49]
    A. Ilderton, “Note on the conjectured breakdown of QED perturbation theory in strong fields,” Phys. Rev. D 99, 085002 (2019).10.1103/physrevd.99.085002
    [50]
    A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, “Improved local-constant-field approximation for strong-field QED codes,” Phys. Rev. A 99, 022125 (2019).10.1103/physreva.99.022125
    [51]
    A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, “Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments,” Phys. Rev. E 92, 023305 (2015).10.1103/PhysRevE.92.023305
    [52]
    B. King and S. Tang, “Nonlinear compton scattering of polarized photons in plane-wave backgrounds,” Phys. Rev. A 102, 022809 (2020).10.1103/physreva.102.022809
    [53]
    T. N. Wistisen and A. Di Piazza, “Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization,” Phys. Rev. D 100, 116001 (2019).10.1103/physrevd.100.116001
    [54]
    T. N. Wistisen, “Numerical approach to the semiclassical method of pair production for arbitrary spins and photon polarization,” Phys. Rev. D 101, 076017 (2020).10.1103/physrevd.101.076017
    [55]
    V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, “Quantum radiation theory in inhomogeneous external fields,” Nucl. Phys. B 328, 387 (1989).10.1016/0550-3213(89)90334-9
    [56]
    T. Blackburn, A. Ilderton, C. Murphy, and M. Marklund, “Scaling laws for positron production in laser–electron-beam collisions,” Phys. Rev. A 96, 022128 (2017).10.1103/physreva.96.022128
    [57]
    O. Olugh, Z.-L. Li, B.-S. Xie, and R. Alkofer, “Pair production in differently polarized electric fields with frequency chirps,” Phys. Rev. D 99, 036003 (2019).10.1103/physrevd.99.036003
    [58]
    L. H. Thomas, “The motion of the spinning electron,” Nature 117, 514 (1926).10.1038/117514a0
    [59]
    L. H. Thomas, “I. The kinematics of an electron with an axis,” London, Edinburgh Dublin Philos. Mag. J. Sci. 3, 1–22 (1927).10.1080/14786440108564170
    [60]
    V. Bargmann, L. Michel, and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2, 435 (1959).10.1103/physrevlett.2.435
    [61]
    K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu, and J.-X. Li, “Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction,” Matter Radiat. Extremes 5, 054402 (2020).10.1063/5.0007734
    [62]
    R.-T. Guo, Y. Wang, R. Shaisultanov, F. Wan, Z.-F. Xu, Y.-Y. Chen, K. Z. Hatsagortsyan, and J.-X. Li, “Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse,” Phys. Rev. Res. 2, 033483 (2020).10.1103/physrevresearch.2.033483
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (183) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return