Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Qiu Jie, Hao Liang, Cao Lihua, Zou Shiyang. Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave[J]. Matter and Radiation at Extremes, 2021, 6(6): 065903. doi: 10.1063/5.0062902
Citation: Qiu Jie, Hao Liang, Cao Lihua, Zou Shiyang. Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave[J]. Matter and Radiation at Extremes, 2021, 6(6): 065903. doi: 10.1063/5.0062902

Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave

doi: 10.1063/5.0062902
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: hao_liang@iapcm.ac.cn
  • Received Date: 2021-07-09
  • Accepted Date: 2021-09-10
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • In inertial confinement fusion (ICF), overlapping of laser beams is common. Owing to the effective high laser intensity of the overlapped beams, the collective mode of stimulated Brillouin scattering (SBS) with a shared scattered light wave is potentially important. In this work, an exact analytic solution for the convective gain coefficient of the collective SBS modes with shared scattered wave is presented for two overlapped beams based on a linear kinetic model. The effects of the crossing angle, polarization states, and finite beam overlapping volume of the two laser beams on the shared light modes are analyzed for cases with zero and nonzero wavelength difference between the two beams. It is found that all these factors have a significant influence on the shared light modes of SBS. Furthermore, the out-of-plane modes, in which the wavevectors of daughter waves lie in different planes from the two overlapped beams, are found to be important for certain polarization states and especially for obtuse crossing angles. In particular, adjusting the polarization directions of the two beams to be orthogonal to each other or tuning the wavelength difference to a sufficiently large value (of the order of nanometers) are found to be effective methods to suppress the shared light modes of SBS. This work will be helpful for comprehending and suppressing collective SBS with shared scattered waves in ICF experiments.
  • loading
  • [1]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka, D. H. Froula, D. H. Edgell, D. T. Michel, I. V. Igumenshchev, D. E. Hinkel, P. Michel, and J. D. Moody, “Multiple-beam laser-plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623
    [2]
    R. K. Kirkwood, J. D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, P. Michel, D. Hinkel, R. Berger, E. Williams, J. Milovich, L. Yin, H. Rose, B. Macgowan, O. Landen, M. Rosen, and J. Lindl, “A review of laser-plasma interaction physics of indirect-drive fusion,” Plasma Phys. Controlled Fusion 55, 103001 (2013).10.1088/0741-3335/55/10/103001
    [3]
    V. Tikhonchuk, Y. J. Gu, O. Klimo, J. Limpouch, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes,” Matter Radiat. Extremes 4, 045402 (2019).10.1063/1.5090965
    [4]
    P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas, D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, and L. J. Suter, “Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer,” Phys. Rev. Lett. 102, 025004 (2009).10.1103/PhysRevLett.102.025004
    [5]
    P. Michel, S. H. Glenzer, L. Divol, D. K. Bradley, D. Callahan, S. Dixit, S. Glenn, D. Hinkel, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, S. Le Pape, N. B. Meezan, R. Town, K. Widmann, E. A. Williams, B. J. MacGowan, J. Lindl, and L. J. Suter, “Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility,” Phys. Plasmas 17, 056305 (2010).10.1063/1.3325733
    [6]
    J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley, D. A. Callahan, E. L. Dewald, S. Dixit, M. J. Edwards, S. Glenn, A. Hamza, C. Haynam, D. E. Hinkel, N. Izumi, O. Jones, J. D. Kilkenny, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, O. L. Landen, S. LePape, J. D. Lindl, B. J. MacGowan, N. B. Meezan, A. Nikroo, M. D. Rosen, M. B. Schneider, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, K. Widmann, E. A. Williams, L. J. Atherton, S. H. Glenzer, and E. I. Moses, “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344–349 (2012).10.1038/nphys2239
    [7]
    L. Hao, X. Y. Hu, C. Y. Zheng, B. Li, J. Xiang, and Z. J. Liu, “Study of crossed-beam energy transfer process with large crossing angle in three-dimension,” Laser Part. Beams 34, 270–275 (2016).10.1017/s0263034616000082
    [8]
    V. V. Eliseev, W. Rozmus, V. T. Tikhonchuk, and C. E. Capjack, “Interaction of crossed laser beams with plasmas,” Phys. Plasmas 3, 2215–2217 (1996).10.1063/1.871703
    [9]
    D. Turnbull, P. Michel, J. E. Ralph, L. Divol, J. S. Ross, L. F. Berzak Hopkins, A. L. Kritcher, D. E. Hinkel, and J. D. Moody, “Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments,” Phys. Rev. Lett. 114, 125001 (2015).10.1103/physrevlett.114.125001
    [10]
    D. T. Michel, A. V. Maximov, R. W. Short, S. X. Hu, J. F. Myatt, W. Seka, A. A. Solodov, B. Yaakobi, and D. H. Froula, “Experimental validation of the two-plasmon-decay common-wave process,” Phys. Rev. Lett. 109, 155007 (2012).10.1103/physrevlett.109.155007
    [11]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger, O. S. Jones, L. B. Hopkins, R. L. Berger, W. L. Kruer, and J. D. Moody, “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/PhysRevLett.115.055003
    [12]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [13]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
    [14]
    Q. S. Feng, Z. J. Liu, L. H. Cao, C. Z. Xiao, L. Hao, C. Y. Zheng, C. Ning, and X. T. He, “Interaction of parametric instabilities from 3ω and 2ω lasers in large-scale inhomogeneous plasmas,” Nucl. Fusion 60, 066012 (2020).10.1088/1741-4326/ab7f14
    [15]
    Q. S. Feng, L. H. Cao, Z. J. Liu, C. Y. Zheng, and X. T. He, “Stimulated Brillouin scattering of backward stimulated Raman scattering,” Sci. Rep. 10, 3492 (2020).10.1038/s41598-020-59727-4
    [16]
    L. Hao, W. Y. Huo, Z. J. Liu, J. Li, C. Y. Zheng, and C. Ren, “A frequency filter of backscattered light of stimulated Raman scattering due to the Raman rescattering in the gas-filled hohlraums,” Nucl. Fusion 61, 036041 (2021).10.1088/1741-4326/abd921
    [17]
    Y. Ji, C. W. Lian, R. Yan, C. Ren, D. Yang, Z. H. Wan, B. Zhao, C. Wang, Z. H. Fang, and J. Zheng, “Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime,” Matter Radiat. Extremes 6, 015901 (2021).10.1063/5.0026379
    [18]
    R. K. Kirkwood, P. Michel, R. London, J. D. Moody, E. Dewald, L. Yin, J. Kline, D. Hinkel, D. Callahan, N. Meezan, E. Williams, L. Divol, B. L. Albright, K. J. Bowers, E. Bond, H. Rose, Y. Ping, T. L. Wang, C. Joshi, W. Seka, N. J. Fisch, D. Turnbull, S. Suckewer, J. S. Wurtele, S. Glenzer, L. Suter, C. Haynam, O. Landen, and B. J. Macgowan, “Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition,” Phys. Plasmas 18, 056311 (2011).10.1063/1.3587122
    [19]
    C. Neuville, V. Tassin, D. Pesme, M.-C. Monteil, P.-E. Masson-Laborde, C. Baccou, P. Fremerye, F. Philippe, P. Seytor, D. Teychenné, W. Seka, J. Katz, R. Bahr, and S. Depierreux, “Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves,” Phys. Rev. Lett. 116, 235002 (2016).10.1103/physrevlett.116.235002
    [20]
    S. Depierreux, C. Neuville, V. Tassin, M.-C. Monteil, P.-E. Masson-Laborde, C. Baccou, P. Fremerye, F. Philippe, P. Seytor, D. Teychenné, J. Katz, R. Bahr, M. Casanova, N. Borisenko, L. Borisenko, A. Orekhov, A. Colaitis, A. Debayle, G. Duchateau, A. Heron, S. Huller, P. Loiseau, P. Nicolai, C. Riconda, G. Tran, C. Stoeckl, W. Seka, V. Tikhonchuk, D. Pesme, and C. Labaune, “Experimental investigation of the collective stimulated Brillouin and Raman scattering of multiple laser beams in inertial confinement fusion experiments,” Plasma Phys. Controlled Fusion 62, 014024 (2019).10.1088/1361-6587/ab5acd
    [21]
    W. Seka, H. A. Baldis, J. Fuchs, S. P. Regan, D. D. Meyerhofer, C. Stoeckl, B. Yaakobi, R. S. Craxton, and R. W. Short, “Multibeam stimulated Brillouin scattering from hot, solid-target plasmas,” Phys. Rev. Lett. 89, 175002 (2002).10.1103/physrevlett.89.175002
    [22]
    T. Gong, L. Hao, Z. C. Li, D. Yang, S. W. Li, X. Li, L. Guo, S. Y. Zou, Y. Y. Liu, X. H. Jiang, X. S. Peng, T. Xu, X. M. Liu, Y. L. Li, C. Y. Zheng, H. B. Cai, Z. J. Liu, J. Zheng, Z. B. Wang, Q. Li, P. Li, R. Zhang, Y. Zhang, F. Wang, D. Wang, F. Wang, S. Y. Liu, J. M. Yang, S. E. Jiang, B. H. Zhang, and Y. K. Ding, “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
    [23]
    D. F. DuBois, B. Bezzerides, and H. A. Rose, “Collective parametric instabilities of many overlapping laser beams with finite bandwidth,” Phys. Fluids B 4, 241–251 (1992).10.1063/1.860439
    [24]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, and X. T. He, “Linear theory of multibeam parametric instabilities in homogeneous plasmas,” Phys. Plasmas 26, 062109 (2019).10.1063/1.5096850
    [25]
    Y. Zhao, C. F. Wu, S. M. Weng, Z. M. Sheng, and J. Q. Zhu, “Mitigation of multibeam stimulated Raman scattering with polychromatic light,” Plasma Phys. Controlled Fusion 63, 055006 (2021).10.1088/1361-6587/abe75a
    [26]
    S. J. Yang, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, X. T. He, and C. Z. Xiao, “Growth and saturation of stimulated Raman scattering in two overlapping laser beams,” Phys. Rev. E 102, 013205 (2020).10.1103/PhysRevE.102.013205
    [27]
    D. W. Forslund, J. M. Kindel, and E. L. Lindman, “Theory of stimulated scattering processes in laser-irradiated plasmas,” Phys. Fluids 18, 1002–1016 (1975).10.1063/1.861248
    [28]
    L. Hao, Y. Q. Zhao, D. Yang, Z. J. Liu, X. Y. Hu, C. Y. Zheng, S. Y. Zou, F. Wang, X. S. Peng, Z. C. Li, S. W. Li, T. Xu, and H. Y. Wei, “Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code,” Phys. Plasmas 21, 072705 (2014).10.1063/1.4890019
    [29]
    L. Hao, D. Yang, X. Li, Z. C. Li, Y. Y. Liu, H. B. Cai, Z. J. Liu, P. J. Gu, T. Xu, S. W. Li, B. Li, M. Q. He, S. Z. Wu, Q. Wang, L. H. Cao, C. Y. Zheng, W. Y. Zha, X. S. Peng, Y. G. Liu, Y. L. Li, X. M. Liu, P. Yang, L. Guo, X. H. Jiang, L. F. Hou, B. Deng, P. Wang, S. Y. Liu, J. M. Yang, F. Wang, W. D. Zheng, S. Y. Zou, J. Liu, S. E. Jiang, Y. K. Ding, and S. P. Zhu, “Investigation on laser plasma instability of the outer ring beams on SGIII laser facility,” AIP Adv. 9, 095201 (2019).10.1063/1.5087936
    [30]
    J. Qiu, L. Hao, L. H. Cao, and S. Y. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared ion acoustic wave,” arXiv: 2105.12548 (2021).
    [31]
    D. J. Strozzi, E. A. Williams, D. E. Hinkel, D. H. Froula, R. A. London, and D. A. Callahan, “Ray-based calculations of backscatter in laser fusion targets,” Phys. Plasmas 15, 102703 (2008).10.1063/1.2992522
    [32]
    R. L. Berger, L. J. Suter, L. Divol, R. A. London, T. Chapman, D. H. Froula, N. B. Meezan, P. Neumayer, and S. H. Glenzer, “Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter,” Phys. Rev. E 91, 031103 (2015).10.1103/PhysRevE.91.031103
    [33]
    J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth, “Parametric instabilities of electromagnetic waves in plasmas,” Phys. Fluids 17, 778–785 (1974).10.1063/1.1694789
    [34]
    F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, 1984), Vol. 1.
    [35]
    W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer between crossing laser beams,” Phys. Plasmas 3, 382–385 (1996).10.1063/1.871863
    [36]
    P. Michel, W. Rozmus, E. A. Williams, L. Divol, R. L. Berger, R. P. J. Town, S. H. Glenzer, and D. A. Callahan, “Stochastic ion heating from many overlapping laser beams in fusion plasmas,” Phys. Rev. Lett. 109, 195004 (2012).10.1103/physrevlett.109.195004
    [37]
    S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett. 19, 417–419 (1994).10.1364/ol.19.000417
    [38]
    S. H. Glenzer, D. H. Froula, L. Divol, M. Dorr, R. L. Berger, S. Dixit, B. A. Hammel, C. Haynam, J. A. Hittinger, J. P. Holder, O. S. Jones, D. H. Kalantar, O. L. Landen, A. B. Langdon, S. Langer, B. J. MacGowan, A. J. Mackinnon, N. Meezan, E. I. Moses, C. Niemann, C. H. Still, L. J. Suter, R. J. Wallace, E. A. Williams, and B. K. F. Young, “Experiments and multiscale simulations of laser propagation through ignition-scale plasmas,” Nat. Phys. 3, 716–719 (2007).10.1038/nphys709
    [39]
    J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, and P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).10.1103/physrevlett.86.2810
    [40]
    I. Barth and N. J. Fisch, “Reducing parametric backscattering by polarization rotation,” Phys. Plasmas 23, 102106 (2016).10.1063/1.4964291
    [41]
    Y. Q. Gao, Y. Cui, L. J. Ji, D. X. Rao, X. H. Zhao, F. J. Li, W. Feng, L. Xia, J. N. Liu, H. T. Shi, P. Y. Du, J. Liu, X. L. Li, T. Wang, T. X. Zhang, C. Shan, Y. L. Hua, W. X. Ma, X. Sun, X. F. Chen, X. G. Huang, J. Zhu, W. B. Pei, Z. Sui, and S. Z. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [42]
    Z. Q. Zhong, B. Li, H. Xiong, J. W. Li, J. Qiu, L. Hao, and B. Zhang, “Effective optical smoothing scheme to suppress laser plasma instabilities by time-dependent polarization rotation via pulse chirping,” Opt. Express 29, 1304–1319 (2021).10.1364/oe.405319
    [43]
    P. Michel, L. Divol, E. A. Williams, C. A. Thomas, D. A. Callahan, S. Weber, S. W. Haan, J. D. Salmonson, N. B. Meezan, O. L. Landen, S. Dixit, D. E. Hinkel, M. J. Edwards, B. J. MacGowan, J. D. Lindl, S. H. Glenzer, and L. J. Suter, “Energy transfer between laser beams crossing in ignition hohlraums,” Phys. Plasmas 16, 042702 (2009).10.1063/1.3103788
    [44]
    In discussions for zero laser wavelength difference, 90° ≥ φs ≥ −90° for θs = 0° or θs = 180° is adopted to denote different SL modes. For θs = 0, α = arctan(tan φs/sin θh), while for θs = 180°, α = 180 − arctan(tan φs/sin θh). Thus, for Δλ0 = 0, α = 0 corresponds to “forward” in-plane scattering (θs = 0 and φs = 0), α = 180° corresponds to “backward” in-plane scattering (θs = 180° and φs = 0°), and α = 90° corresponds to scattering with the largest out-of-plane angle (φs = 90°).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (218) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return