Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yi S. Z., Dong J. Q., Jiang L., Huang Q. S., Guo E. F., Z. S. Wang. Simultaneous high-resolution x-ray backlighting and self-emission imaging for laser-produced plasma diagnostics using a two-energy multilayer Kirkpatrick–Baez microscope[J]. Matter and Radiation at Extremes, 2022, 7(1): 015902. doi: 10.1063/5.0062758
Citation: Yi S. Z., Dong J. Q., Jiang L., Huang Q. S., Guo E. F., Z. S. Wang. Simultaneous high-resolution x-ray backlighting and self-emission imaging for laser-produced plasma diagnostics using a two-energy multilayer Kirkpatrick–Baez microscope[J]. Matter and Radiation at Extremes, 2022, 7(1): 015902. doi: 10.1063/5.0062758

Simultaneous high-resolution x-ray backlighting and self-emission imaging for laser-produced plasma diagnostics using a two-energy multilayer Kirkpatrick–Baez microscope

doi: 10.1063/5.0062758
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wangzs@tongji.edu.cn
  • Received Date: 2021-07-08
  • Accepted Date: 2021-11-03
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • A simultaneous high-resolution x-ray backlighting and self-emission imaging method for laser-produced plasma diagnostics is developed in which two Kirkpatrick–Baez imaging channels for high-energy and low-energy diagnostics are constructed using a combination of multilayer mirrors in near-coaxial form. By using a streak or framing camera placed on the image plane, both backlit and self-emission images of a laser-produced plasma with high spatial and temporal resolution can be obtained simultaneously in a single shot. This paper describes the details of the method with regard to its optical and multilayer design, assembly, and alignment method. In addition, x-ray imaging results with a spatial resolution better than 5 µm in the laboratory and experimental results with imploding capsules in the SG-III prototype laser facility are presented.
  • loading
  • [1]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Clarendon Press, Oxford, England, 2004).
    [2]
    L. A. Pickworth, B. A. Hammel, V. A. Smalyuk, A. G. MacPhee, H. A. Scott, H. F. Robey, O. L. Landen, M. A. Barrios, S. P. Regan, M. B. Schneider, M. Hoppe, Jr., T. Kohut, D. Holunga, C. Walters, B. Haid, and M. Dayton, “Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique,” Phys. Rev. Lett. 117(3), 035001 (2016).10.1103/PhysRevLett.117.035001
    [3]
    A. Morace, L. Fedeli, D. Batani, S. Baton, F. N. Beg, S. Hulin, L. C. Jarrott, A. Margarit, M. Nakai, M. Nakatsutsumi, P. Nicolai, N. Piovella, M. S. Wei, X. Vaisseau, L. Volpe, and J. J. Santos, “Development of x-ray radiography for high energy density physics,” Phys. Plasmas 21(10), 102712 (2014).10.1063/1.4900867
    [4]
    L. C. Jarrott, M. S. Wei, C. McGuffey, A. A. Solodov, W. Theobald, B. Qiao, C. Stoeckl, R. Betti, H. Chen, J. Delettrez, T. Döppner, E. M. Giraldez, V. Y. Glebov, H. Habara, T. Iwawaki, M. H. Key, R. W. Luo, F. J. Marshall, H. S. McLean, C. Mileham, P. K. Patel, J. J. Santos, H. Sawada, R. B. Stephens, T. Yabuuchi, and F. N. Beg, “Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets,” Nat. Phys. 12(5), 499–504 (2016).10.1038/nphys3614
    [5]
    P. Kirkpatrick and A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38(9), 766–774 (1948).10.1364/josa.38.000766
    [6]
    C. Stoeckl, T. Filkins, R. Jungquist, C. Mileham, N. R. Pereira, S. P. Regan, M. J. Shoup, and W. Theobald, “Characterization of shaped Bragg crystal assemblies for narrowband x-ray imaging,” Rev. Sci. Instrum. 89(10), 10G124 (2018).10.1063/1.5036525
    [7]
    S. Z. Yi, B. Z. Mu, J. T. Zhu, X. Wang, W. B. Li, Z. S. Wang, P. F. He, W. Wang, Z. H. Fang, and S. Z. Fu, “Time-resolved multispectral X-ray imaging with multi-channel Kirkpatrick-Baez microscope for plasma diagnostics at Shenguang-II laser facility,” Chin. Opt. Lett. 12(8), 083401 (2014).10.3788/col201412.083401
    [8]
    S. Z. Yi, F. Zhang, Q. S. Huang, L. Wei, Y. Q. Gu, and Z. S. Wang, “High-resolution X-ray flash radiography of Ti characteristic lines with multilayer Kirkpatrick–Baez microscope at the Shenguang-II Update laser facility,” High Power Laser Sci. Eng. 9(3), e42 (2021).10.1017/hpl.2021.30
    [9]
    S. Z. Yi, Z. Zhang, Q. S. Huang, Z. Zhang, B. Z. Mu, Z. S. Wang, Z. S. Fang, et al.“Eight-channel Kirkpatrick–Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments,” Rev. Sci. Instrum 87(10), 103501 (2016).10.1063/1.4963702
    [10]
    F. J. Marshall, R. E. Bahr, V. N. Goncharov, V. Yu. Glebov, B. Peng, S. P. Regan, T. C. Sangster, and C. Stoeckl, “A framed, 16-image Kirkpatrick–Baez x-ray microscope,” Rev. Sci. Instrum. 88(09), 093702 (2017).10.1063/1.5000737
    [11]
    S. Yi, Z. Zhang, Q. Huang, Z. Zhang, Z. Wang, L. Wei, D. Liu, L. Cao, and Y. Gu, “Tandem Kirkpatrick–Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics,” Rev. Sci. Instrum. 89(03), 036105 (2018).10.1063/1.5019206
    [12]
    H. Sawada, S. Lee, T. Shiroto, H. Nagatomo, Y. Arikawa, H. Nishimura, T. Ueda, K. Shigemori, A. Sunahara, N. Ohnishi, F. N. Beg, W. Theobald, F. Pérez, P. K. Patel, and S. Fujioka, “Flash Kα radiography of laser-driven solid sphere compression for fast ignition,” Appl. Phys. Lett. 108(25), 254101 (2016).10.1063/1.4954383
    [13]
    V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska, M. Krůs, F. Wang, D. Yang, S. W. Li, Z. C. Li, Z. Y. Guan, Y. G. Liu, T. Xu, X. S. Peng, X. M. Liu, Y. L. Li, J. Li, T. M. Song, J. M. Yang, S. E. Jiang, B. H. Zhang, W. Y. Huo, G. Ren, Y. H. Chen, W. Zheng, Y. K. Ding, K. Lan, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (114) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return