Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Samulski C., Srinivasan B., Manuel M. J.-E., Masti R., Sauppe J. P., Kline J.. Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries[J]. Matter and Radiation at Extremes, 2022, 7(2): 026902. doi: 10.1063/5.0062168
Citation: Samulski C., Srinivasan B., Manuel M. J.-E., Masti R., Sauppe J. P., Kline J.. Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries[J]. Matter and Radiation at Extremes, 2022, 7(2): 026902. doi: 10.1063/5.0062168

Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries

doi: 10.1063/5.0062168
More Information
  • Corresponding author: b)Author to whom correspondence should be addressed: srinbhu@vt.edu
  • Received Date: 2021-07-02
  • Accepted Date: 2022-01-16
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • Experiments have identified the Rayleigh–Taylor (RT) instability as one of the greatest obstacles to achieving inertial confinement fusion. Consequently, mitigation strategies to reduce RT growth and fuel–ablator mixing in the hotspot during the deceleration phase of the implosion are of great interest. In this work, the effect of seed magnetic fields on deceleration-phase RT growth are studied in planar and cylindrical geometries under conditions relevant to the National Ignition Facility (NIF) and Omega experiments. The magnetohydrodynamic (MHD) and resistive-MHD capabilities of the FLASH code are used to model imploding cylinders and planar blast-wave-driven targets. Realistic target and laser parameters are presented that suggest the occurrence of morphological differences in late-time RT evolution in the cylindrical NIF case and a measurable difference in spike height of single-mode growth in the planar NIF case. The results of this study indicate the need for target designs to utilize an RT-unstable foam–foam interface in order to achieve sufficient magnetic field amplification to alter RT evolution. Benchmarked FLASH simulations are used to study these magnetic field effects in both resistive and ideal MHD.
  • loading
  • [1]
    L. J. Perkins, D. D.-M. Ho, B. G. Logan, G. B. Zimmerman, M. A. Rhodes, D. J. Strozzi, D. T. Blackfield, and S. A. Hawkins, “The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion,” Phys. Plasmas 24, 062708 (2017).10.1063/1.4985150
    [2]
    J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17, 056318 (2010).10.1063/1.3416557
    [3]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [4]
    R. L. McCrory, R. E. Bahr, R. Betti, T. R. Boehly, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, W. R. Donaldson, R. Epstein, J. Frenje, V. Y. Glebov, V. N. Goncharov, O. V. Gotchev, R. Q. Gram, D. R. Harding, D. G. Hicks, P. A. Jaanimagi, R. L. Keck, J. H. Kelly, J. P. Knauer, C. K. Li, S. J. Loucks, L. D. Lund, F. J. Marshall, P. W. McKenty, D. D. Meyerhofer, S. F. B. Morse, R. D. Petrasso, P. B. Radha, S. P. Regan, S. Roberts, F. Séguin, W. Seka, S. Skupsky, V. A. Smalyuk, C. Sorce, J. M. Soures, C. Stoeckl, R. P. J. Town, M. D. Wittman, B. Yaakobi, and J. D. Zuegel, “OMEGA ICF experiments and preparation for direct drive ignition on NIF,” Nucl. Fusion 41, 1413–1422 (2001).10.1088/0029-5515/41/10/309
    [5]
    G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
    [6]
    T. Rayleigh, “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,” Proc. London Math. Soc. s1-14, 170–177 (1882).10.1112/plms/s1-14.1.170
    [7]
    M. J.-E. Manuel, C. K. Li, F. H. Séguin, J. Frenje, D. T. Casey, R. D. Petrasso, S. X. Hu, R. Betti, J. D. Hager, D. D. Meyerhofer et al., “First measurements of Rayleigh–Taylor-induced magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 108, 255006 (2012).10.1103/physrevlett.108.255006
    [8]
    B. Srinivasan, G. Dimonte, and X.-Z. Tang, “Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002
    [9]
    B. Srinivasan and X.-Z. Tang, “Mechanism for magnetic field generation and growth in Rayleigh–Taylor unstable inertial confinement fusion plasmas,” Phys. Plasmas 19, 082703 (2012).10.1063/1.4742176
    [10]
    B. Srinivasan and X.-Z. Tang, “The mitigating effect of magnetic fields on Rayleigh–Taylor unstable inertial confinement fusion plasmas,” Phys. Plasmas 20, 056307 (2013).10.1063/1.4803092
    [11]
    B. Srinivasan and X.-Z. Tang, “Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization,” Europhys. Lett 107, 65001 (2014).10.1209/0295-5075/107/65001
    [12]
    M. J.-E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, S. R. Klein, F. Kroll, F.-E. Brack, T. Michel, P. Mabey, S. Pikuz, J. C. Williams, M. Koenig, A. Casner, and C. C. Kuranz, “On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas,” Matter Radiat. Extremes 6, 026904 (2021).10.1063/5.0025374
    [13]
    D. S. Clark, C. R. Weber, A. L. Kritcher, J. L. Milovich, P. K. Patel, S. W. Haan, B. A. Hammel, J. M. Koning, M. M. Marinak, M. V. Patel, C. R. Schroeder, S. M. Sepke, and M. J. Edwards, “Modeling and projecting implosion performance for the National Ignition Facility,” Nucl. Fusion 59, 032008 (2018).10.1088/1741-4326/aabcf7
    [14]
    D. S. Clark, C. R. Weber, J. L. Milovich, A. E. Pak, D. T. Casey, B. A. Hammel, D. D. Ho, O. S. Jones, J. M. Koning, A. L. Kritcher, M. M. Marinak, L. P. Masse, D. H. Munro, M. V. Patel, P. K. Patel, H. F. Robey, C. R. Schroeder, S. M. Sepke, and M. J. Edwards, “Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions,” Phys. Plasmas 26, 050601 (2019).10.1063/1.5091449
    [15]
    B. M. Haines, C. H. Aldrich, J. M. Campbell, R. M. Rauenzahn, and C. A. Wingate, “High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions,” Phys. Plasmas 24, 052701 (2017).10.1063/1.4981222
    [16]
    J. P. Sauppe, B. M. Haines, S. Palaniyappan, P. A. Bradley, S. H. Batha, E. N. Loomis, and J. L. Kline, “Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code,” Phys. Plasmas 26, 042701 (2019).10.1063/1.5083851
    [17]
    P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107, 035006 (2011).10.1103/PhysRevLett.107.035006
    [18]
    R. Betti, K. Anderson, V. N. Goncharov, R. L. McCrory, D. D. Meyerhofer, S. Skupsky, and R. P. J. Town, “Deceleration phase of inertial confinement fusion implosions,” Phys. Plasmas 9, 2277–2286 (2002).10.1063/1.1459458
    [19]
    A. Bose, K. M. Woo, R. Nora, and R. Betti, “Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability,” Phys. Plasmas 22, 072702 (2015).10.1063/1.4923438
    [20]
    J. P. Sauppe, S. Palaniyappan, E. N. Loomis, J. L. Kline, K. A. Flippo, and B. Srinivasan, “Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry,” Matter Radiat. Extremes 4, 065403 (2019).10.1063/1.5090999
    [21]
    J. P. Sauppe, S. Palaniyappan, J. L. Kline, K. A. Flippo, O. L. Landen, D. Shvarts, S. H. Batha, P. A. Bradley, E. N. Loomis, B. J. Tobias et al., “Design of cylindrical implosion experiments to demonstrate scale-invariant Rayleigh–Taylor instability growth,” High Energy Density Phys. 36, 100831 (2020).10.1016/j.hedp.2020.100831
    [22]
    J. P. Sauppe, S. Palaniyappan, B. J. Tobias, J. L. Kline, K. A. Flippo, O. L. Landen, D. Shvarts, S. H. Batha, P. A. Bradley, E. N. Loomis et al., “Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments,” Phys. Rev. Lett. 124, 185003 (2020).10.1103/physrevlett.124.185003
    [23]
    S. Palaniyappan, J. P. Sauppe, B. J. Tobias, C. F. Kawaguchi, K. A. Flippo, A. B. Zylstra, O. L. Landen, D. Shvarts, E. Malka, S. H. Batha et al., “Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility,” Phys. Plasmas 27, 042708 (2020).10.1063/1.5144608
    [24]
    W. W. Hsing, C. W. Barnes, J. B. Beck, N. M. Hoffman, D. Galmiche, A. Richard, J. Edwards, P. Graham, S. Rothman, and B. Thomas, “Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions,” Phys. Plasmas 4, 1832–1840 (1997).10.1063/1.872326
    [25]
    C. C. Kuranz, R. P. Drake, M. J. Grosskopf, B. Fryxell, A. Budde, J. F. Hansen, A. R. Miles, T. Plewa, N. Hearn, and J. Knauer, “Spike morphology in blast-wave-driven instability experiments,” Phys. Plasmas 17, 052709 (2010).10.1063/1.3389135
    [26]
    C. C. Kuranz, R. P. Drake, M. J. Grosskopf, A. Budde, C. Krauland, D. C. Marion, A. J. Visco, J. R. Ditmar, H. F. Robey, B. A. Remington, A. R. Miles, A. B. R. Cooper, C. Sorce, T. Plewa, N. C. Hearn, K. L. Killebrew, J. P. Knauer, D. Arnett, and T. Donajkowski, “Three-dimensional blast-wave-driven Rayleigh–Taylor instability and the effects of long-wavelength modes,” Phys. Plasmas 16, 056310 (2009).10.1063/1.3099320
    [27]
    B. A. Remington, S. V. Weber, M. M. Marinak, S. W. Haan, J. D. Kilkenny, R. J. Wallace, and G. Dimonte, “Single-mode and multimode Rayleigh–Taylor experiments on Nova,” Phys. Plasmas 2, 241–255 (1995).10.1063/1.871096
    [28]
    B. A. Remington, H.-S. Park, D. T. Casey, R. M. Cavallo, D. S. Clark, C. M. Huntington, C. C. Kuranz, A. R. Miles, S. R. Nagel, K. S. Raman, and V. A. Smalyuk, “Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility,” Proc. Natl. Acad. Sci. U. S. A. 116, 18233–18238 (2019).10.1073/pnas.1717236115
    [29]
    R. P. Drake, D. R. Leibrandt, E. C. Harding, C. C. Kuranz, M. A. Blackburn, H. F. Robey, B. A. Remington, M. J. Edwards, A. R. Miles, T. S. Perry, R. J. Wallace, H. Louis, J. P. Knauer, and D. Arnett, “Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface,” Phys. Plasmas 11, 2829–2837 (2004).10.1063/1.1651492
    [30]
    N. C. Swisher, C. C. Kuranz, D. Arnett, O. Hurricane, B. A. Remington, H. F. Robey, and S. I. Abarzhi, “Rayleigh–Taylor mixing in supernova experiments,” Phys. Plasmas 22, 102707 (2015).10.1063/1.4931927
    [31]
    M. J.-E. Manuel, M. Flaig, T. Plewa, C. K. Li, F. H. Séguin, J. A. Frenje, D. T. Casey, R. D. Petrasso, S. X. Hu, R. Betti, J. Hager, D. D. Meyerhofer, and V. Smalyuk, “Collisional effects on Rayleigh–Taylor-induced magnetic fields,” Phys. Plasmas 22, 056305 (2015).10.1063/1.4919392
    [32]
    [33]
    M. Flaig, T. Plewa, P. A. Keiter, R. P. Drake, M. Grosskopf, C. Kuranz, and H.-S. Park, “Design of a supernova-relevant Rayleigh–Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics,” High Energy Density Phys. 12, 35–45 (2014).10.1016/j.hedp.2014.06.003
    [34]
    [35]
    S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, “Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field,” Phys. Plasmas 17, 056303 (2010).10.1063/1.3333505
    [36]
    E. G. Harris, “Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field,” Phys. Fluids 5, 1057–1062 (1962).10.1063/1.1724473
    [37]
    D. B. Sinars, S. A. Slutz, M. C. Herrmann, R. D. McBride, M. E. Cuneo, K. J. Peterson, R. A. Vesey, C. Nakhleh, B. E. Blue, K. Killebrew et al., “Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility,” Phys. Rev. Lett. 105, 185001 (2010).10.1103/physrevlett.105.185001
    [38]
    D. Ryutov, T. Awe, S. Hansen, R. McBride, K. Peterson, D. Sinars, and S. Slutz, “Effect of axial magnetic flux compression on the magnetic Rayleigh–Taylor instability (theory),” AIP Conf. Proc. 1639, 63–66 (2014).10.1063/1.4904778
    [39]
    T. J. Awe, R. D. McBride, C. A. Jennings, D. C. Lamppa, M. R. Martin, D. C. Rovang, S. A. Slutz, M. E. Cuneo, A. C. Owen, D. B. Sinars et al., “Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field,” Phys. Rev. Lett. 111, 235005 (2013).10.1103/physrevlett.111.235005
    [40]
    B.-I. Jun, M. L. Norman, and J. M. Stone, “A numerical study of Rayleigh–Taylor instability in magnetic fluids,” Astrophys. J. 453, 332 (1995).10.1086/176393
    [41]
    B. K. Shivamoggi, “Rayleigh–Taylor instability of a compressible plasma in a horizontal magnetic field,” Z. Angew. Math. Phys. 33, 693–697 (1982).10.1007/bf00944951
    [42]
    D. L. Tubbs, C. W. Barnes, J. B. Beck, N. M. Hoffman, J. A. Oertel, R. G. Watt, T. Boehly, D. Bradley, P. Jaanimagi, and J. Knauer, “Cylindrical implosion experiments using laser direct drive,” Phys. Plasmas 6, 2095–2104 (1999).10.1063/1.873462
    [43]
    J. R. Fincke, N. E. Lanier, S. H. Batha, R. M. Hueckstaedt, G. R. Magelssen, S. D. Rothman, K. W. Parker, and C. J. Horsfield, “Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry,” Phys. Rev. Lett. 93, 115003 (2004).10.1103/physrevlett.93.115003
    [44]
    N. E. Lanier, G. R. Magelssen, S. H. Batha, J. R. Fincke, C. J. Horsfield, K. W. Parker, and S. D. Rothman, “Validation of the radiation hydrocode RAGE against defect-driven mix experiments in a compressible, convergent, and miscible plasma system,” Phys. Plasmas 13, 042703 (2006).10.1063/1.2192502
    [45]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).10.1016/s0030-4018(96)00325-2
    [46]
    E. I. Moses, “Ignition on the National Ignition Facility: A path towards inertial fusion energy,” Nucl. Fusion 49, 104022 (2009).10.1088/0029-5515/49/10/104022
    [47]
    B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J. Suppl. Ser. 131, 273 (2000).10.1086/317361
    [48]
    [49]
    [50]
    L. Spitzer, Physics of Fully Ionized Gases (Courier Corporation, 2006).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (137) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return