Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Su Lei, Shi Kaiyuan, Zhang Li, Wang Yanlong, Yang Guoqiang. Static and dynamic diamond anvil cell (s-dDAC): A bidirectional remote controlled device for static and dynamic compression/decompression[J]. Matter and Radiation at Extremes, 2022, 7(1): 018401. doi: 10.1063/5.0061583
Citation: Su Lei, Shi Kaiyuan, Zhang Li, Wang Yanlong, Yang Guoqiang. Static and dynamic diamond anvil cell (s-dDAC): A bidirectional remote controlled device for static and dynamic compression/decompression[J]. Matter and Radiation at Extremes, 2022, 7(1): 018401. doi: 10.1063/5.0061583

Static and dynamic diamond anvil cell (s-dDAC): A bidirectional remote controlled device for static and dynamic compression/decompression

doi: 10.1063/5.0061583
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: leisu2050@iccas.ac.cn and gqyang@iccas.ac.cn; a)Authors to whom correspondence should be addressed: leisu2050@iccas.ac.cn and gqyang@iccas.ac.cn
  • Received Date: 2021-06-28
  • Accepted Date: 2021-11-12
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • A novel bidirectional remotely controlled device for static and dynamic compression/decompression using diamond anvil cells (DACs) has been developed that can control pressure in an accurate and consistent manner. Electromechanical piezoelectric actuators are applied to a conventional DAC, allowing applications under a variety of pressure conditions. Using this static and dynamic DAC (s-dDAC), it is possible to addresses the poorly studied experimental regime lying between purely static and purely dynamic studies. The s-dDAC, driven by three piezoelectric actuators, can be combined with a time-resolved spectral measurement system and high-speed imaging device to study the structural changes, chemical reactions, and properties of materials under extreme conditions. The maximum compression/decompression rate or pressure range highly depends on the culet size of the anvil, and a higher compression rate and wider pressure range can be realized in a DAC with smaller anvil culet. With our s-dDAC, we have been able to achieve the highest compression rate to date with a 300 μm culet anvil: 48 TPa/s. An overview of a variety of experimental measurements possible with our device is presented.
  • loading
  • [1]
    S. M. Hong, L. Y. Chen, X. R. Liu et al., “High pressure jump apparatus for measuring Grűneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate),” Rev. Sci. Instrum. 76, 053905 (2005).10.1063/1.1899443
    [2]
    C. L. Lin and J. S. Tse, “High-pressure nonequilibrium dynamics on second-to-microsecond time scales: Application of time-resolved X-ray diffraction and dynamic compression in ice,” J. Phys. Chem. Lett. 12, 8024–8038 (2021).10.1021/acs.jpclett.1c01623
    [3]
    J. Quednau and G. M. Schneider, “A new high-pressure cell for differential pressure‐jump experiments using optical detection,” Rev. Sci. Instrum. 60, 3685–3687 (1989).10.1063/1.1140475
    [4]
    S. Sinanis and G. M. Schneider, “Pressure-jump investigations on the kinetics of the isotropic‐nematic phase transition of a liquid crystal: Time behavior of the scattered and transmitted light intensities for PCH 5,” Ber. Bunsenges. Phys. Chem. 102, 745–750 (1998).10.1002/bbpc.19981020507
    [5]
    M. Steinhart, M. Kriechbaum, K. Pressl et al., “High-pressure instrument for small- and wide-angle x-ray scattering. II. Time-resolved experiments,” Rev. Sci. Instrum. 70, 1540–1545 (1999).10.1063/1.1149621
    [6]
    J. Woenckhaus, R. Köhling, R. Winter et al., “High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique,” Rev. Sci. Instrum. 71, 3895–3899 (2000).10.1063/1.1290508
    [7]
    J. Woenckhaus, R. Köhling, P. Thiyagarajan et al., “Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding,” Biophys. J. 80, 1518–1523 (2001).10.1016/s0006-3495(01)76124-3
    [8]
    H. Herberhold and R. Winter, “Temperature- and pressure-induced unfolding and refolding of ubiquitin: A static and kinetic Fourier transform infrared spectroscopy study,” Biochemistry 41, 2396–2401 (2002).10.1021/bi012023b
    [9]
    H. Herberhold, S. Marchal, R. Lange et al., “Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein—A static and kinetic FTIR, UV/VIS and fluorescence spectroscopy study,” J. Mol. Biol. 330, 1153–1164 (2003).10.1016/s0022-2836(03)00657-0
    [10]
    W. J. Evans, C.-S. Yoo, G. W. Lee et al., “Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials,” Rev. Sci. Instrum. 78, 073904 (2007).10.1063/1.2751409
    [11]
    G. W. Lee, W. J. Evans, and C.-S. Yoo, “Crystallization of water in a dynamic diamond-anvil cell: Evidence for ice VII-like local order in supercompressed water,” Phys. Rev. B 74, 134112 (2006).10.1103/physrevb.74.134112
    [12]
    J.-Y. Chen and C.-S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U. S. A. 108, 7685–7688 (2011).10.1073/pnas.1100752108
    [13]
    G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice VI,” Proc. Natl. Acad. Sci. U. S. A. 104, 9178–9181 (2007).10.1073/pnas.0609390104
    [14]
    S. V. Sinogeikin, J. S. Smith, E. Rod et al., “Online remote control systems for static and dynamic compression and decompression using diamond anvil cells,” Rev. Sci. Instrum. 86, 072209 (2015).10.1063/1.4926892
    [15]
    Y.-J. Kim, Y.-H. Lee, S. Lee et al., “Shock growth of ice crystal near equilibrium melting pressure under dynamic compression,” Proc. Natl. Acad. Sci. U. S. A. 116, 8679–8684 (2019).10.1073/pnas.1818122116
    [16]
    H.-P. Liermann, W. Morgenroth, A. Ehnes et al., “The Extreme conditions beamline at PETRA III, DESY: Possibilities to conduct time resolved monochromatic diffraction experiments in dynamic and laser heated DAC,” J. Phys.: Conf. Ser. 215, 012029 (2010).10.1088/1742-6596/215/1/012029
    [17]
    C. Lin, J. S. Smith, S. V. Sinogeikin et al., “Experimental evidence of low-density liquid water upon rapid decompression,” Proc. Natl. Acad. Sci. U. S. A. 115, 2010–2015 (2018).10.1073/pnas.1716310115
    [18]
    C. Lin, J. S. Smith, S. V. Sinogeikin et al., “A metastable liquid melted from a crystalline solid under decompression,” Nat. Commun 8, 1–6 (2017).10.1038/ncomms14260
    [19]
    B. Haberl, M. Guthrie, B. D. Malone et al., “Controlled formation of metastable germanium polymorphs,” Phys. Rev. B 89, 144111 (2014).10.1103/physrevb.89.144111
    [20]
    C. Lin, J. S. Smith, S. V. Sinogeikin et al., “Kinetics of the B1-B2 phase transition in KCl under rapid compression,” J. Appl. Phys. 119, 045902 (2016).10.1063/1.4940771
    [21]
    C. Lin, X. Yong, J. S. Tse et al., “Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice,” Phys. Rev. Lett. 119, 135701 (2017).10.1103/physrevlett.119.135701
    [22]
    H. Cheng, J. Zhang, Y. Li et al., “A convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells,” High Pressure Res. 38, 32–40 (2018).10.1080/08957959.2017.1396326
    [23]
    X. Dou, K. Ding, and B. Sun, “Development and application of piezoelectric driving diamond anvil cell device,” Rev. Sci. Instrum. 88, 123105 (2017).10.1063/1.4996063
    [24]
    X. Wu, X. Dou, K. Ding et al., “In situ tuning the single photon emission from single quantum dots through hydrostatic pressure,” Appl. Phys. Lett. 103, 252108 (2013).10.1063/1.4856755
    [25]
    S. Yang, K. Ding, X. Dou et al., “Zinc-blende and wurtzite GaAs quantum dots in nanowires studied using hydrostatic pressure,” Phys. Rev. B 92, 165315 (2015).10.1103/physrevb.92.165315
    [26]
    Y. Ye, X. Dou, K. Ding et al., “Single photon emission from deep-level defects in monolayer WSe2,” Phys. Rev. B 95, 245313 (2017).10.1103/physrevb.95.245313
    [27]
    L. Zhang, K. Shi, Y. Wang et al., “Compression rate-dependent crystallization of pyridine,” J. Phys. Chem. C 125, 6983–6989 (2021).10.1021/acs.jpcc.1c01163
    [28]
    P. Xiong and M. Peng, “Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3:Nd3+ for stress sensors,” J. Mater. Chem. C 7, 6301–6307 (2019).10.1039/c9tc00242a
    [29]
    Y. Du, Y. Jiang, T. Sun et al., “Mechanically excited multicolor luminescence in lanthanide ions,” Adv. Mater. 31, 1807062 (2019).10.1002/adma.201807062
    [30]
    C. G. Camara, J. V. Escobar, J. R. Hird et al., “Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape,” Nature 455, 1089–1092 (2008).10.1038/nature07378
    [31]
    H. Zhang, Y. Wei, X. Huang et al., “Recent development of elastico-mechanoluminescent phosphors,” J. Lumin. 207, 137–148 (2019).10.1016/j.jlumin.2018.10.117
    [32]
    L. Zhang, K. Shi, Y. Wang et al., “Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide,” Nano Energy 85, 106005 (2021).10.1016/j.nanoen.2021.106005
    [33]
    X. Wang, H. Zhang, R. Yu et al., “Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process,” Adv. Mater. 27, 2324–2331 (2015).10.1002/adma.201405826
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (314) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return