Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhu Baojun, Zhang Zhe, Liu Chang, Yuan Dawei, Jiang Weiman, Wei Huigang, Li Fang, Zhang Yihang, Han Bo, Cheng Lei, Li Shangqing, Zhong Jiayong, Yuan Xiaoxia, Tong Bowei, Sun Wei, Fang Zhiheng, Wang Chen, Xie Zhiyong, Hua Neng, Wu Rong, Qiao Zhanfeng, Liang Guiyun, Zhu Baoqiang, Zhu Jianqiang, Fujioka Shinsuke, Li Yutong. Observation of Zeeman splitting effect in a laser-driven coil[J]. Matter and Radiation at Extremes, 2022, 7(2): 024402. doi: 10.1063/5.0060954
Citation: Zhu Baojun, Zhang Zhe, Liu Chang, Yuan Dawei, Jiang Weiman, Wei Huigang, Li Fang, Zhang Yihang, Han Bo, Cheng Lei, Li Shangqing, Zhong Jiayong, Yuan Xiaoxia, Tong Bowei, Sun Wei, Fang Zhiheng, Wang Chen, Xie Zhiyong, Hua Neng, Wu Rong, Qiao Zhanfeng, Liang Guiyun, Zhu Baoqiang, Zhu Jianqiang, Fujioka Shinsuke, Li Yutong. Observation of Zeeman splitting effect in a laser-driven coil[J]. Matter and Radiation at Extremes, 2022, 7(2): 024402. doi: 10.1063/5.0060954

Observation of Zeeman splitting effect in a laser-driven coil

doi: 10.1063/5.0060954
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: baojunzhu@ile.osaka-u.ac.jp
  • Received Date: 2021-06-23
  • Accepted Date: 2022-01-16
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • The Zeeman splitting effect is observed in a strong magnetic field generated by a laser-driven coil. The expanding plasma from the coil wire surface is concentrated at the coil center and interacts with the simultaneously generated magnetic field. The Cu I spectral lines at wavelengths of 510.5541, 515.3235, and 521.8202 nm are detected and analyzed. The splittings of spectral lines are used to estimate the magnetic field strength at the coil center as ∼31.4 ± 15.7 T at a laser intensity of ∼5.6 × 1015 W/cm2, which agrees well with measurements using a B-dot probe. Some other plasma parameters of the central plasma disk are also studied. The temperature is evaluated from the Cu I spectral line intensity ratio, while the electron density is estimated from the Stark broadening effect.
  • loading
  • [1]
    P. Zeeman, “XXXII. On the influence of magnetism on the nature of the light emitted by a sub-stance,” London, Edinburgh Dublin Philos. Mag. J. Sci. 43(262), 226–239 (1897).10.1080/14786449708620985
    [2]
    W. L. Virgo, “Simultaneous Stark and Zeeman effects in atoms with hyperfine structure,” Am. J. Phys. 81, 936–942 (2013).10.1119/1.4823999
    [3]
    C. Uihlein and L. Eaves, “High-magnetic-field Zeeman spectroscopy of the 0.84-eV Cr-related emission and absorption line in GaAs(Cr): Experiment and theory,” Phys. Rev. B 26, 4473–4484 (1982).10.1103/physrevb.26.4473
    [4]
    K. Mizushiri, K. Fujii, T. Shikama, A. Iwamae, M. Goto, S. Morita, and M. Hasuo, “A simultaneous measurement of polarization-resolved spectra of neutral helium 23P–33D, 21P–31D and 23P–33S emissions from the periphery of a Large Helical Device plasma,” Plasma Phys. Controlled Fusion 53, 105012–105024 (2011).10.1088/0741-3335/53/10/105012
    [5]
    J. D. Hey, C. C. Chu, S. Brezinsek, P. Mertens, and B. Unterberg, “Oxygen ion impurity in the TEXTOR tokamak boundary plasma observed and analysed by Zeeman spectroscopy,” J. Phys. B: At., Mol. Opt. Phys. 35, 1525–1553 (2002).10.1088/0953-4075/35/6/309
    [6]
    D. Deming, R. J. Boyle, D. E. Jennings, and G. Wiedemann, “Solar magnetic field studies using the 12 micron emission lines. I. Quiet-sun time series and sunspot slices: Erratum,” Astrophys. J. 338, 1193 (1989).10.1086/167270
    [7]
    H. W. Babcock, “Zeeman effect in stellar spectra,” Astrophys. J. 105, 105 (1947).10.1086/144887
    [8]
    R. I. Anderson, A. Reiners, and S. K. Solanki, “On detectability of Zeeman broadening in optical spectra of F- and G-dwarfs,” Astron. Astrophys. 522, A81 (2010).10.1051/0004-6361/201014769
    [9]
    J. D. Bailey, “Measuring the surface magnetic fields of magnetic stars with unresolved Zeeman splitting,” Astron. Astrophys. 568, A38 (2014).10.1051/0004-6361/201423963
    [10]
    J. Ferreira, “Magnetically-driven jets from Keplerian accretion discs,” Astron. Astrophys. 319, 340–359 (1997).
    [11]
    R. A. Kopp and G. W. Pneuman, “Magnetic reconnection in the corona and the loop prominence phenomenon,” Sol. Phys. 50, 85–98 (1976).10.1007/bf00206193
    [12]
    S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, “A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection,” Nature 371, 495–497 (1994).10.1038/371495a0
    [13]
    E. A. McLean, J. A. Stamper, C. K. Manka, H. R. Griem, D. W. Droemer, and B. H. Ripin, “Observation of magnetic fields in laser-produced plasma using the Zeeman effect,” Phys. Fluids 27, 1327–1335 (1984).10.1063/1.864747
    [14]
    J. Briand, J. C. Kieffer, A. Gomes, C. Arnas, J. P. Dinguirard, Y. Quemener, L. Berge, M. El Tamer, and M. Armengaud, “Measurements of magnetic fields using the Zeeman effect in laser-produced plasmas,” Phys. Fluids 30, 2893–2897 (1987).10.1063/1.866054
    [15]
    S. Sakata, S. Lee, H. Morita, T. Johzaki, H. Sawada, Y. Iwasa, K. Matsuo, K. F. F. Law, A. Yao, M. Hata, A. Sunahara, S. Kojima, Y. Abe, H. Kishimoto, A. Syuhada, T. Shiroto, A. Morace, A. Yogo, N. Iwata, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, N. Miyanaga, J. Kawanaka, H. Shiraga, K. Mima, H. Nishimura, M. Bailly-Grandvaux, J. J. Santos, H. Nagatomo, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku, and S. Fujioka, “Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states,” Nat. Commun. 9, 3937 (2018).10.1038/s41467-018-06173-6
    [16]
    K. Matsuo, T. Sano, H. Nagatomo, T. Somekawa, K. F. F. Law, H. Morita, Y. Arikawa, and S. Fujioka, “Enhancement of ablative Rayleigh-Taylor instability growth by thermal conduction suppression in a magnetic field,” Phys. Rev. Lett. 127, 165001 (2021); arXiv:2106.03293.10.1103/physrevlett.127.165001
    [17]
    H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, and C. Yamanaka, “Generation of a strong magnetic field by an intense CO2 laser pulse,” Phys. Rev. Lett. 56, 846–849 (1986).10.1103/physrevlett.56.846
    [18]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).10.1038/srep01170
    [19]
    B. J. Zhu, Y. T. Li, D. W. Yuan, Y. F. Li, F. Li, G. Q. Liao, J. R. Zhao, J. Y. Zhong, F. B. Xue, S. K. He, W. W. Wang, F. Lu, F. Q. Zhang, L. Yang, K. N. Zhou, N. Xie, W. Hong, H. G. Wei, K. Zhang, B. Han, X. X. Pei, C. Liu, Z. Zhang, W. M. Wang, J. Q. Zhu, Y. Q. Gu, Z. Q. Zhao, B. H. Zhang, G. Zhao, and J. Zhang, “Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses,” Appl. Phys. Lett. 107, 261903 (2015).10.1063/1.4939119
    [20]
    J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani, M. Chevrot, J. E. Cross, R. Crowston, J. L. Dubois, J. Gazave, G. Gregori, E. D’humières, S. Hulin, K. Ishihara, S. Kojima, E. Loyez, J. R. Marquès, A. Morace, P. Nicolaï, O. Peyrusse, A. Poyé, D. Raffestin, J. Ribolzi, M. Roth, G. Schaumann, F. Serres, V. T. Tikhonchuk, P. Vacar, and N. Woolsey, “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17, 083051 (2015); arXiv:1503.00247.10.1088/1367-2630/17/8/083051
    [21]
    K. F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, and H. Azechi, “Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry,” Appl. Phys. Lett. 108, 091104 (2016).10.1063/1.4943078
    [22]
    L. Gao, H. Ji, G. Fiksel, W. Fox, M. Evans, and N. Alfonso, “Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current,” Phys. Plasmas 23, 043106 (2016).10.1063/1.4945643
    [23]
    Z. Zhang, B. Zhu, Y. Li, W. Jiang, D. Yuan, H. Wei, G. Liang, F. Wang, G. Zhao, J. Zhong, B. Han, N. Hua, B. Zhu, J. Zhu, C. Wang, Z. Fang, and J. Zhang, “Generation of strong magnetic fields with a laser-driven coil,” High Power Laser Sci. Eng. 6, e38 (2018).10.1017/hpl.2018.33
    [24]
    B. Zhu, Z. Zhang, W. Jiang, J. Wang, C. Zhu, J. Tan, Y. Zhang, Y. He, Y. Li, J. Ma, and Y. Li, “Ultrafast pulsed magnetic fields generated by a femtosecond laser,” Appl. Phys. Lett. 113, 072405 (2018).10.1063/1.5038047
    [25]
    B. Zhu, Z. Zhang, W. Jiang, J. Wang, C. Zhu, J. Tan, Y. Zhang, Y. He, Y. Li, J. Ma, and Y. Li, “Effects of pulse duration on magnetic fields generated with a laser-driven coil,” High Energy Density Phys. 37, 100900 (2020).10.1016/j.hedp.2020.100900
    [26]
    G. Liao, Y. Li, B. Zhu, Y. Li, F. Li, M. Li, X. Wang, Z. Zhang, S. He, W. Wang, F. Lu, F. Zhang, L. Yang, K. Zhou, N. Xie, W. Hong, Y. Gu, Z. Zhao, B. Zhang, and J. Zhang, “Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses,” Matter Radiat. Extremes 1, 187–191 (2016).10.1016/j.mre.2016.06.003
    [27]
    O. Chubar, P. Elleaume, and J. Chavanne, “A three-dimensional magnetostatics computer code for insertion devices,” J. Synchrotron Radiat. 5, 481–484 (1998).10.1107/s0909049597013502
    [28]
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press Vol. 209 (Cambridge University Press, 1935), Harvey B. Plotnick collection of the history of quantum mechanics, and the theory of relativity.
    [29]
    [30]
    F. Paschen and E. Back, “Normale und anomale Zeemaneffekte,” Ann. Phys. 344, 897–932 (1912).10.1002/andp.19123441502
    [31]
    F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, Cham, 2016).
    [32]
    [33]
    B. N. Murdin, J. Li, M. L. Pang, E. T. Bowyer, K. L. Litvinenko, S. K. Clowes, H. Engelkamp, C. R. Pidgeon, I. Galbraith, N. V. Abrosimov, H. Riemann, S. G. Pavlov, H. W. Hübers, and P. G. Murdin, “Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars,” Nat. Commun. 4, 1469 (2013).10.1038/ncomms2466
    [34]
    J. Liebert, H. C. Harris, C. C. Dahn, G. D. Schmidt, S. J. Kleinman, A. Nitta, J. Krzesiski, D. Eisenstein, J. A. Smith, P. Szkody, S. Hawley, S. F. Anderson, J. Brinkmann, M. J. Collinge, X. Fan, P. B. Hall, G. R. Knapp, D. Q. Lamb, B. Margon, D. P. Schneider, and N. Silvestri, “SDSS white dwarfs with spectra showing atomic oxygen and/or carbon lines,” Astrophys. J. 126(5), 2521 (2003).10.1086/378911
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (320) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return