Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Martinez B., Chen S. N., Bolaños S., Blanchot N., Boutoux G., Cayzac W., Courtois C., Davoine X., Duval A., Horny V., Lantuejoul I., Le Deroff L., Masson-Laborde P. E., Sary G., Vauzour B., Smets R., Gremillet L., Fuchs J.. Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams[J]. Matter and Radiation at Extremes, 2022, 7(2): 024401. doi: 10.1063/5.0060582
Citation: Martinez B., Chen S. N., Bolaños S., Blanchot N., Boutoux G., Cayzac W., Courtois C., Davoine X., Duval A., Horny V., Lantuejoul I., Le Deroff L., Masson-Laborde P. E., Sary G., Vauzour B., Smets R., Gremillet L., Fuchs J.. Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams[J]. Matter and Radiation at Extremes, 2022, 7(2): 024401. doi: 10.1063/5.0060582

Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams

doi: 10.1063/5.0060582
More Information
  • Corresponding author: b)Authors to whom correspondence should be addressed: bertrand.martinez@tecnico.ulisboa.pt; laurent.gremillet@cea.fr; and julien.fuchs@polytechnique.edu; b)Authors to whom correspondence should be addressed: bertrand.martinez@tecnico.ulisboa.pt; laurent.gremillet@cea.fr; and julien.fuchs@polytechnique.edu; b)Authors to whom correspondence should be addressed: bertrand.martinez@tecnico.ulisboa.pt; laurent.gremillet@cea.fr; and julien.fuchs@polytechnique.edu
  • Received Date: 2021-06-20
  • Accepted Date: 2021-11-30
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration. We examine this through particle-in-cell and Monte Carlo simulations that model, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets. Laser parameters relevant to the 0.5 PW LMJ-PETAL and 0.6–6 PW Apollon systems are considered. Owing to its high intensity, the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100 MeV, thereby unlocking efficient neutron generation via spallation reactions. As a result, despite a 30-fold lower pulse energy than the LMJ-PETAL laser, the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux. Notably, we predict that very compact neutron pulses, of ∼10 ps duration and ∼100 μm spot size, can be released provided the lead convertor target is thin enough (∼100 μm). These sources are characterized by extreme fluxes, of the order of 1023 n cm−2 s−1, and even ten times higher when using the 6 PW Apollon laser. Such values surpass those currently achievable at large-scale accelerator-based neutron sources (∼1016 n cm−2 s−1), or reported from previous laser experiments using low-Z converters (∼1018 n cm−2 s−1). By showing that such laser systems can produce neutron pulses significantly brighter than existing sources, our findings open a path toward attractive novel applications, such as flash neutron radiography and laboratory studies of heavy-ion nucleosynthesis.
  • loading
  • [1]
    I. Obodovskiy, Radiation: Fundamentals, Applications, Risks, and Safety (Elsevier, 2019), pp. 289–292.
    [2]
    O. Hallonsten and T. Kaiserfeld, Between Making and Knowing (World Scientific, 2020), pp. 553–560.
    [3]
    R. Garoby et al., “The European spallation source design,” Phys. Scr. 93, 014001 (2018).10.1088/1402-4896/aaecea
    [4]
    D. Filges and F. Goldenbaum, Handbook of Spallation Research: Theory, Experiments and Applications (Wiley, 2009).
    [5]
    A. Alejo, H. Ahmed, A. Green, S. R. Mirfayzi, M. Borghesi, and S. Kar, “Recent advances in laser-driven neutron sources,” Nuovo Cimento 38C, 188 (2016).10.1393/ncc/i2015-15188-8
    [6]
    L. J. Perkins, B. G. Logan, M. D. Rosen, M. D. Perry, T. Diaz de la Rubia, N. M. Ghoniem, T. Ditmire, P. T. Springer, and S. C. Wilks, “The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence,” Nucl. Fusion 40, 1 (2000).10.1088/0029-5515/40/1/301
    [7]
    R. Loveman, J. Bendahan, T. Gozani, and J. Stevenson, “Time of flight fast neutron radiography,” Nucl. Instrum. Methods Phys. Res., Sect. B 99, 765 (1995).10.1016/0168-583x(94)00684-9
    [8]
    D. P. Higginson, J. M. McNaney, D. C. Swift, T. Bartal, D. S. Hey, R. Kodama, S. Le Pape, A. Mackinnon, D. Mariscal, H. Nakamura, N. Nakanii, K. A. Tanaka, and F. N. Beg, “Laser generated neutron source for neutron resonance spectroscopy,” Phys. Plasmas 17, 100701 (2010).10.1063/1.3484218
    [9]
    O. Noam, D. C. Gautier, N. Fotiades, A. Beck, and I. Pomerantz, “Fast neutron resonance radiography with full time-series digitization,” Nucl. Instrum. Methods Phys. Res., Sect. A 955, 163309 (2020).10.1016/j.nima.2019.163309
    [10]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/PhysRevLett.110.044802
    [11]
    F. Wagner et al., “Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets,” Phys. Rev. Lett. 116, 205002 (2016).10.1103/physrevlett.116.205002
    [12]
    A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [13]
    J. Feng et al., “High-efficiency neutron source generation from photonuclear reactions driven by laser plasma accelerator,” High Engergy Density Phys. 36, 100753 (2020).10.1016/j.hedp.2020.100753
    [14]
    I. Pomerantz, E. McCary, A. R. Meadows, A. Arefiev, A. C. Bernstein, C. Chester, J. Cortez, M. E. Donovan, G. Dyer, E. W. Gaul, D. Hamilton, D. Kuk, A. C. Lestrade, C. Wang, T. Ditmire, and B. M. Hegelich, “Ultrashort pulsed neutron source,” Phys. Rev. Lett. 113, 184801 (2014).10.1103/physrevlett.113.184801
    [15]
    [16]
    S. R. Mirfayzi, A. Alejo, H. Ahmed, D. Raspino, S. Ansell, L. A. Wilson, C. Armstrong, N. M. H. Butler, R. J. Clarke, A. Higginson, J. Kelleher, C. D. Murphy, M. Notley, D. R. Rusby, E. Schooneveld, M. Borghesi, P. McKenna, N. J. Rhodes, D. Neely, C. M. Brenner, and S. Kar, “Experimental demonstration of a compact epithermal neutron source based on a high power laser,” Appl. Phys. Lett. 111, 044101 (2017).10.1063/1.4994161
    [17]
    M. Thoennessen, “Reaching the limits of nuclear stability,” Rep. Prog. Phys. 67, 1187 (2004).10.1088/0034-4885/67/7/r04
    [18]
    S. N. Chen, F. Negoita, K. Spohr, E. d’Humières, I. Pomerantz, and J. Fuchs, “Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory,” Matter Radiat. Extremes 4, 054402 (2019).10.1063/1.5081666
    [19]
    P. Hill and Y. Wu, “Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes,” Phys. Rev. C 103, 014602 (2021).10.1103/physrevc.103.014602
    [20]
    T. Kajino et al., “Current status of r-process nucleosynthesis,” Prog. Part. Nucl. Phys. 107, 109 (2019).10.1016/j.ppnp.2019.02.008
    [21]
    J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The R-process and nucleochronology,” Phys. Rep. 208, 267 (1991).10.1016/0370-1573(91)90070-3
    [22]
    I. S. Anderson, C. Andreani, J. M. Carpenter, G. Festa, G. Gorini, C.-K. Loong, and R. Senesi, “Research opportunities with compact accelerator-driven neutron sources,” Phys. Rep. 654, 1 (2016).10.1016/j.physrep.2016.07.007
    [23]
    [24]
    S. S. Bulanov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, D. W. Litzenberg, T. Matsuoka, A. G. R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, and A. Maksimchuk, “Generation of GeV protons from 1 PW laser interaction with near critical density targets,” Phys. Plasmas 17, 043105 (2010).10.1063/1.3372840
    [25]
    J. Davis and G. M. Petrov, “Generation of GeV ion bunches from high-intensity laser-target interactions,” Phys. Plasmas 16, 023105 (2009).10.1063/1.3074519
    [26]
    M. L. Zhou, X. Q. Yan, G. Mourou, J. A. Wheeler, J. H. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).10.1063/1.4947544
    [27]
    E. d’Humières et al., “Longitudinal laser ion acceleration in low density targets: Experimental optimization on the titan laser facility and numerical investigation of the ultra-high intensity limit,” Proc. SPIE 9514, 95140B (2015).10.1117/12.2178675
    [28]
    A. V. Brantov, E. A. Govras, V. Yu. Bychenkov, and W. Rozmus, “Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets,” Phys. Rev. Spec. Top.--Accel. Beams 18, 021301 (2015).10.1103/physrevstab.18.021301
    [29]
    A. V. Brantov, E. A. Govras, V. F. Kovalev, and V. Yu. Bychenkov, “Synchronized ion acceleration by ultraintense slow light,” Phys. Rev. Lett. 116, 085004 (2016).10.1103/PhysRevLett.116.085004
    [30]
    A. A. Sahai et al., “Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient,” Phys. Rev. E 88, 043105 (2013).10.1103/PhysRevE.88.043105
    [31]
    H. Y. Wang et al., “High-energy monoenergetic proton beams from two-stage acceleration with a slow laser pulse,” Phys. Rev. Spec. Top.--Accel. Beams 18, 021302 (2015).10.1103/physrevstab.18.021302
    [32]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [33]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751
    [34]
    D. A. Brown et al., “ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data,” Nucl. Data Sheets 148, 1 (2018).10.1016/j.nds.2018.02.001
    [35]
    A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J.-P. Jadaud, J.-P. LeBreton, C. Reverdin, B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel, and J.-L. Miquel, “LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics,” High Engergy Density Phys. 17, 2 (2015).10.1016/j.hedp.2014.11.009
    [36]
    D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).10.1017/hpl.2016.34
    [37]
    D. Batani et al., “Development of the PETAL laser facility and its diagnostic tools,” Acta Polytech. 53, 103 (2013).10.14311/1721
    [38]
    J. Vyskočil, O. Klimo, and S. Weber, “Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets,” Plasma Phys. Controlled Fusion 60, 054013 (2018).10.1088/1361-6587/aab4c3
    [39]
    J. Vyskočil, E. Gelfer, and O. Klimo, “Inverse Compton scattering from solid targets irradiated by ultra-short laser pulses in the 1022–1023 W/cm2 regime,” Plasma Phys. Controlled Fusion 62, 064002 (2020).10.1088/1361-6587/ab83cb
    [40]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ-rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [41]
    B. Rus, P. Bakule, D. Kramer, G. Korn, J. T. Green, J. Nóvak, M. Fibrich, F. Batysta, J. Thoma, J. Naylon, T. Mazanec, M. Vítek, R. Barros, E. Koutris, J. Hřebíček, J. Polan, R. Baše, P. Homer, M. Košelja, T. Havlíček, A. Honsa, M. Novák, C. Zervos, P. Korous, M. Laub, and J. Houžvička, “ELI-beamlines laser systems: Status and design options,” Proc. SPIE 8780, 87801T (2013).10.1117/12.2021264
    [42]
    D. Doria, M. O. Cernaianu, P. Ghenuche, D. Stutman, K. A. Tanaka, C. Ticos, and C. A. Ur, “Overview of ELI-NP status and laser commissioning experiments with 1 PW and 10 PW class-lasers,” J. Instrum. 15, C09053 (2020).10.1088/1748-0221/15/09/c09053
    [43]
    T. T. Böhlen, F. Cerutti, M. P. W. Chin, A. Fassò, A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala, G. Smirnov, and V. Vlachoudis, “The FLUKA code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014).10.1016/j.nds.2014.07.049
    [44]
    [45]
    M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, ESTAR, PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3), National Institute of Standards and Technology, Gaithersburg, MD, 2005, http://physics.nist.gov/Star.
    [46]
    E. Lefebvre et al., “Electron and photon production from relativistic laser–plasma interactions,” Nucl. Fusion 43, 629 (2003).10.1088/0029-5515/43/7/317
    [47]
    A. F. Lifschitz et al., “Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition,” J. Comput. Phys. 228, 1803 (2009).10.1016/j.jcp.2008.11.017
    [48]
    D. Raffestin et al., “Enhanced ion acceleration using the high-energy petawatt PETAL laser,” Matter Radiat. Extremes 6, 056901 (2021).10.1063/5.0046679
    [49]
    E. Lefebvre et al., “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2018).10.1088/1741-4326/aacc9c
    [50]
    I. Lantuéjoul, B. Vauzour, A. Duval, L. Lecherbourg, B. Marchet, C. Reverdin, B. Rossé, C. Rousseaux, J.-C. Toussaint, A. Chancé, D. Dubreuil, B. Gastineau, J.-C. Guillard, F. Harrault, D. Leboeuf, X. Leboeuf, D. Loiseau, A. Lotode, C. Pès, G. Boutoux, T. Caillaud, F. Granet, P. Prunet, T. Ceccotti, J. Fuchs, D. Batani, J.-E. Ducret, S. Hulin, K. Jakubowska, N. Rabhi, D. Raffestin, and L. Sérani, “SEPAGE: A proton-ion-electron spectrometer for LMJ-PETAL,” Proc. SPIE 10763, 107630X (2018).10.1117/12.2504146
    [51]
    A. Lévy et al., “Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses,” Opt. Lett. 32, 310 (2007).10.1364/OL.32.000310
    [52]
    D. J. Stark, L. Yin, B. J. Albright, and F. Guo, “Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime,” Phys. Plasmas 24, 053103 (2017).10.1063/1.4982741
    [53]
    K. Burdonov et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6, 064402 (2021); arXiv:2108.01336.10.1063/5.0065138
    [54]
    T. Suzuki et al., “β-decay rates for exotic nuclei and r-process nucleosynthesis up to thorium and uranium,” Astrophys. J. 859, 133 (2018).10.3847/1538-4357/aabfde
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (360) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return