Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Strucka J., Halliday J. W. D., Gheorghiu T., Horton H., Krawczyk B., Moloney P., Parker S., Rowland G., Schwartz N., Stanislaus S., Theocharous S., Wilson C., Zhao Z., Shelkovenko T. A., Pikuz S. A., Bland S. N.. A portable X-pinch design for x-ray diagnostics of warm dense matter[J]. Matter and Radiation at Extremes, 2022, 7(1): 016901. doi: 10.1063/5.0059926
Citation: Strucka J., Halliday J. W. D., Gheorghiu T., Horton H., Krawczyk B., Moloney P., Parker S., Rowland G., Schwartz N., Stanislaus S., Theocharous S., Wilson C., Zhao Z., Shelkovenko T. A., Pikuz S. A., Bland S. N.. A portable X-pinch design for x-ray diagnostics of warm dense matter[J]. Matter and Radiation at Extremes, 2022, 7(1): 016901. doi: 10.1063/5.0059926

A portable X-pinch design for x-ray diagnostics of warm dense matter

doi: 10.1063/5.0059926
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jergus.strucka15@imperial.ac.uk
  • Received Date: 2021-06-14
  • Accepted Date: 2021-10-19
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • We describe the design and x-ray emission properties (temporal, spatial, and spectral) of Dry Pinch I, a portable X-pinch driver developed at Imperial College London. Dry Pinch I is a direct capacitor discharge device, 300 × 300 × 700 mm3 in size and ∼50 kg in mass, that can be used as an external driver for x-ray diagnostics in high-energy-density physics experiments. Among key findings, the device is shown to reliably produce 1.1 ± 0.3 ns long x-ray bursts that couple ∼50 mJ of energy into photon energies from 1 to 10 keV. The average shot-to-shot jitter of these bursts is found to be 10 ± 4.6 ns using a combination of x-ray and current diagnostics. The spatial extent of the x-ray hot spot from which the radiation emanates agrees with previously published results for X-pinches—suggesting a spot size of 10 ± 6 µm in the soft energy region (1–10 keV) and 190 ± 100 µm in the hard energy region (>10 keV). These characteristics mean that Dry Pinch I is ideally suited for use as a probe in experiments driven in the laboratory or at external facilities when more conventional sources of probing radiation are not available. At the same time, this is also the first detailed investigation of an X-pinch operating reliably at current rise rates of less than 1 kA/ns.
  • loading
  • [1]
    F. Graziani, M. Desjarlais, R. Redmer, and S. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer, 2014), ISBN: 978-3-319-04911-3.
    [2]
    K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53
    [3]
    R. Tommasini, C. Bailey, D. K. Bradley, M. Bowers, H. Chen, J. M. Di Nicola, P. Di Nicola, G. Gururangan, G. N. Hall, C. M. Hardy, D. Hargrove, M. Hermann, M. Hohenberger, J. P. Holder, W. Hsing, N. Izumi, D. Kalantar, S. Khan, J. Kroll, O. L. Landen, J. Lawson, D. Martinez, N. Masters, J. R. Nafziger, S. R. Nagel, A. Nikroo, J. Okui, D. Palmer, R. Sigurdsson, S. Vonhof, R. J. Wallace, and T. Zobrist, “Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility,” Phys. Plasmas 24(5), 053104 (2017).10.1063/1.4983137
    [4]
    T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, and D. A. Hammer, “Point-projection x-ray radiography using an X pinch as the radiation source,” Rev. Sci. Instrum. 72(1), 667–670 (2001).10.1063/1.1323252
    [5]
    S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, and D. A. Hammer, “Phase-contrast x-ray radiography using the X pinch radiation,” Proc. SPIE 4504, 234–239 (2001).10.1117/12.448471
    [6]
    F. N. Beg, R. B. Stephens, H.-W. Xu, D. Haas, S. Eddinger, G. Tynan, E. Shipton, B. DeBono, and K. Wagshal, “Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules,” Appl. Phys. Lett. 89(10), 101502 (2006).10.1063/1.2335959
    [7]
    M. Millot, F. Coppari, J. R. Rygg, A. C. Barrios, S. Hamel, D. C. Swift, and J. H. Eggert, “Nanosecond X-ray diffraction of shock-compressed superionic water ice,” Nature 569, 251–255 (2019).10.1038/s41586-019-1114-6
    [8]
    Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111, 065501 (2013).10.1103/PhysRevLett.111.065501
    [9]
    R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, and P. Loubeyre, “Probing local and electronic structure in warm dense matter: Single pulse synchrotron x-ray absorption spectroscopy on shocked Fe,” Sci. Rep. 6, 26402 (2016).10.1038/srep26402
    [10]
    S. P. Theocharous, S. N. Bland, D. Yanuka, A. Rososhek, M. P. Olbinado, A. Rack, and Ya. E. Krasik, “Use of synchrotron-based radiography to diagnose pulsed power driven wire explosion experiments,” Rev. Sci. Instrum. 90(1), 013504 (2019).10.1063/1.5055949
    [11]
    M. G. Haines, “Fifty years of controlled fusion research,” Plasma Phys. Controlled Fusion 38(5), 643–656 (1996).10.1088/0741-3335/38/5/001
    [12]
    A. S. Bishop, U.S. Atomic Energy Commission, and United Nations International Conference on the Peaceful Uses of Atomic Energy, Project Sherwood: The U.S. Program in Controlled Fusion (Doubleday, New York, 1960).
    [13]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part I,” Plasma Phys. Rep. 41(4), 291–342 (2015).10.1134/S1063780X15040054
    [14]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, M. D. Mitchell, S. N. Bland, and D. A. Hammer, “Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA,” Matter Radiat. Extremes 3(6), 267–277 (2018).10.1016/j.mre.2018.09.001
    [15]
    F. Zucchini, S. N. Bland, C. Chauvin, P. Combes, D. Sol, A. Loyen, B. Roques, and J. Grunenwald, “Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies,” Rev. Sci. Instrum. 86(3), 033507 (2015).10.1063/1.4915496
    [16]
    P. F. Knapp, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, and S. B. Hansen, “Time and space resolved measurement of the electron temperature, mass density and ionization state in the ablation plasma between two exploding al wires,” Phys. Plasmas 19(5), 056302 (2012).10.1063/1.3694039
    [17]
    R. V. Shapovalov, R. B. Spielman, and G. R. Imel, “An oil-free compact X-pinch plasma radiation source: Design and radiation performance,” Rev. Sci. Instrum. 88(6), 063504 (2017).10.1063/1.4986460
    [18]
    G. A. Mesyats, T. A. Shelkovenko, G. V. Ivanenkov, A. V. Agafonov, S. Y. Savinov, S. A. Pikuz, I. N. Tilikin, S. I. Tkachenko, S. A. Chaikovskii, N. A. Ratakhin, V. F. Fedushchak, V. I. Oreshkin, A. V. Fedyunin, A. G. Russkikh, N. A. Labetskaya, A. P. Artemov, D. A. Hammer, and D. B. Sinars, “X-pinch source of subnanosecond soft X-ray pulses based on small-sized low-inductance current generator,” J. Exp. Theor. Phys. 111, 363–370 (2010).10.1134/S1063776110090049
    [19]
    A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, “Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics,” Rev. Sci. Instrum. 79(11), 113102 (2008).10.1063/1.3013123
    [20]
    B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, and F. G. Fujiwara, “High-energy x-ray response of photographic films: Models and measurement,” J. Opt. Soc. Am. B 3(11), 1540–1550 (1986).10.1364/JOSAB.3.001540
    [21]
    [22]
    R. B. Spielman, L. E. Ruggles, R. E. Pepping, S. P. Breeze, J. S. McGurn, and K. W. Struve, “Fielding and calibration issues for diamond photoconducting detectors,” Rev. Sci. Instrum. 68(1), 782–785 (1997).10.1063/1.1147914
    [23]
    B. L. Henke, H. T. Yamada, and T. J. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54(10), 1311–1330 (1983).10.1063/1.1137264
    [24]
    [25]
    V. M. Romanova, I. N. Tilikin, T. A. Shelkovenko, A. R. Mingaleev, E. A. Bolkhovitinov, A. A. Rupasov, A. E. Ter-Oganesyan, and S. A. Pikuz, “The hybrid X-pinch as a source of XUV radiation,” IEEE Trans. Plasma Sci. 46(11), 3837–3841 (2018).10.1109/TPS.2018.2870321
    [26]
    I. H. Mitchell, J. M. Bayley, J. P. Chittenden, J. F. Worley, A. E. Dangor, M. G. Haines, and P. Choi, “A high impedance mega-ampere generator for fiber z-pinch experiments,” Rev. Sci. Instrum. 67(4), 1533–1541 (1996).10.1063/1.1146884
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (230) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return