Citation: | Fu Changbo, Zhang Guoqiang, Ma Yugang. New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers[J]. Matter and Radiation at Extremes, 2022, 7(2): 024201. doi: 10.1063/5.0059405 |
[1] |
L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill Publishing Company, New York, 1968).
|
[2] |
J.-P. Karr, D. Marchand, and E. Voutier, “The proton size,” Nat. Rev. Phys. 2, 601–614 (2020).10.1038/s42254-020-0229-x
|
[3] |
A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico, W. M. Snow, and F. E. Wietfeldt, “Improved determination of the neutron lifetime,” Phys. Rev. Lett. 111, 222501 (2013).10.1103/physrevlett.111.222501
|
[4] |
F. E. Wietfeldt and G. L. Greene, “Colloquium: The neutron lifetime,” Rev. Mod. Phys. 83, 1173–1192 (2011).10.1103/revmodphys.83.1173
|
[5] |
C. Fu, X. Zhang, and D. Dechang, “Feasibility study on the deep Dirac levels with high-intensity lasers,” Nucl. Phys. Rev. 37, 377–381 (2020).10.11804/NuclPhysRev.37.2019CNPC20
|
[6] |
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).10.1103/physrevlett.78.1667
|
[7] |
K. C. Harper, E. G. Moschetta, S. V. Bordawekar, and S. J. Wittenberger, “A laser driven flow chemistry platform for scaling photochemical reactions with visible light,” ACS Cent. Sci. 5, 109–115 (2019).10.1021/acscentsci.8b00728
|
[8] |
B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young, “Big-bang nucleosynthesis after Planck,” J. Cosmol. Astropart. Phys. 80, 543 (2020).10.1088/1475-7516/2020/03/010
|
[9] |
S. Paul, “The puzzle of neutron lifetime,” Nucl. Instrum. Methods Phys. Res., Sect. A 611, 157–166 (2009).10.1016/j.nima.2009.07.095
|
[10] |
W.-B. Ding, Z. Yu, Y. Xu, C.-J. Liu, and T. Bao, “Neutrino emission and cooling of dark-matter-admixed neutron stars,” Chin. Phys. Lett. 36, 049701 (2019).10.1088/0256-307x/36/4/049701
|
[11] |
F. E. Wietfeldt, “Measurements of the neutron lifetime,” Atoms 6, 70 (2018).10.3390/atoms6040070
|
[12] |
B. Goodman and S. R. Ignjatović, “A simpler solution of the Dirac equation in a Coulomb potential,” Am. J. Phys. 65, 214–221 (1997).10.1119/1.18531
|
[13] |
W. Greiner, Relativistic Quantum Mechanics, 3rd ed. (Springer-Verlag Berling Heidelberg, New York, 2000).
|
[14] | |
[15] |
J. Phillips, R. L. Mills, and X. Chen, “Water bath calorimetric study of excess heat generation in ‘resonant transfer’ plasmas,” J. Appl. Phys. 96, 3095–3102 (2004).10.1063/1.1778212
|
[16] |
R. Mills and P. Ray, “Extreme ultraviolet spectroscopy of helium–hydrogen plasma,” J. Phys. D: Appl. Phys. 36, 1535 (2003).10.1088/0022-3727/36/13/316
|
[17] | |
[18] |
S. Jovićević, N. Sakan, M. Ivković, and N. Konjević, “Spectroscopic study of hydrogen Balmer lines in a microwave-induced discharge,” J. Appl. Phys. 105, 013306 (2009).10.1063/1.3046587
|
[19] |
A. Rathke, “A critical analysis of the hydrino model,” New J. Phys. 7, 127 (2005).10.1088/1367-2630/7/1/127
|
[20] |
A. Phelps, “Comment on ‘Water bath calorimetric study of excess heat generation in resonant transfer plasmas,,” J. Appl. Phys. 96, 066108 (2005).10.1063/1.2010616
|
[21] |
N. Dombey, “The hydrino and other unlikely states,” Phys. Lett. A 360, 62–65 (2006).10.1016/j.physleta.2006.07.069
|
[22] |
A. S. de Castro, “Orthogonality criterion for banishing hydrino states from standard quantum mechanics,” Phys. Lett. A 369, 380–383 (2007).10.1016/j.physleta.2007.05.006
|
[23] |
R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).10.1038/nature09250
|
[24] |
I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor, JR, P. O. Tikkanen, and S. Raman, “Dirac–Fock internal conversion coefficients,” At. Data Nucl. Data Tables 81, 1–334 (2002).10.1006/adnd.2002.0884
|
[25] |
A. Pálffy, W. Scheid, and Z. Harman, “Theory of nuclear excitation by electron capture for heavy ions,” Phys. Rev. A 73, 012715 (2006).10.1103/physreva.73.012715
|
[26] |
A. Pálffy, Z. Harman, and W. Scheid, “Quantum interference between nuclear excitation by electron capture and radiative recombination,” Phys. Rev. A 75, 012709 (2007).10.1103/physreva.75.012709
|
[27] |
S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, and T. Okano, “Observation of nuclear excitation by electron transition in 197Au with synchrotron x rays and an avalanche photodiode,” Phys. Rev. Lett. 85, 1831–1834 (2000).10.1103/physrevlett.85.1831
|
[28] |
I. Ahmad, R. W. Dunford, H. Esbensen, D. S. Gemmell, E. P. Kanter, U. Rütt, and S. H. Southworth, “Nuclear excitation by electronic transition in 189Os,” Phys. Rev. C 61, 051304 (2000).10.1103/physrevc.61.051304
|
[29] |
P. Morel, J. M. Daugas, G. Gosselin, V. Méot, and D. Gogny, “Nuclear excitation by electronic processes: NEEC and NEET effects,” Nucl. Phys. A 746, 608–612 (2004).10.1016/j.nuclphysa.2004.09.097
|
[30] |
M. Morita and K. Otozai, “Theory of nuclear excitation by electron transition (NEET) and experimental evidence in 189Os and 237Np,” Hyperfine Interact. 2, 418 (1976).10.1007/bf01021198
|
[31] |
V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393 (1976).10.1016/0370-2693(76)90665-1
|
[32] |
P. Morel, J. M. Daugas, G. Gosselin, V. Méot, and D. Gogny, “Nuclear excitation by electronic processes: NEEC and NEET effects,” AIP Conf. Proc. 769, 1085–1088 (2005).10.1063/1.1945195
|
[33] |
V. A. Krutov and V. N. Fomenko, “Influence of electronic shell on gamma radiation of atomic nuclei,” Annalen der Physik 21, 291 (1968).
|
[34] |
P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. von der Wense, P. G. Thirolf, T. Pfeifer, J. R. C. López-Urrutia, and A. Pálffy, “Electronic bridge excitation in highly charged 229Th ions,” Phys. Rev. Lett. 124, 192502 (2020).10.1103/physrevlett.124.192502
|
[35] |
B. W. J. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nat. Photonics 4, 814 (2010).10.1038/nphoton.2010.239
|
[36] |
L. von der Wense, and B. Seiferle, “The 229Th isomer: Prospects for a nuclear optical clock,” Eur. Phys. J. A 56, 277 (2020).10.1140/epja/s10050-020-00263-0
|
[37] |
N.-Q. Cai, G.-Q. Zhang, C.-B. Fu, and Y.-G. Ma, “Populating 229Th via two-photon electronic bridge mechanism,” Nucl. Sci. Tech. 32, 59 (2021)10.1007/s41365-021-00900-3.
|
[38] |
S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below 10−18,” Phys. Rev. Lett. 123, 033201 (2019).10.1103/physrevlett.123.033201
|
[39] |
K. Beeks, T. Sikorsky, T. Schumm, J. Thielking, M. V. Okhapkin, and E. Peik, “The thorium-229 low-energy isomer and the nuclear clock,” Nat. Rev. Phys. 3, 238–248 (2021).10.1038/s42254-021-00286-6
|
[40] |
G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, “Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution,” Phys. Rev. Lett. 120, 103201 (2018).10.1103/physrevlett.120.103201
|
[41] |
T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic microcalorimeter,” Phys. Rev. Lett. 125, 142503 (2020).10.1103/physrevlett.125.142503
|
[42] |
E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61, 181–186 (2003).10.1209/epl/i2003-00210-x
|
[43] |
C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett. 108, 120802 (2012).10.1103/physrevlett.108.120802
|
[44] |
L. von der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier, H.-F. Wirth, C. Mokry, J. Runke, K. Eberhardt, C. E. Düllmann, N. G. Trautmann, and P. G. Thirolf, “Direct detection of the 229Th nuclear clock transition,” Nature 533, 47–51 (2016).10.1038/nature17669
|
[45] |
J. C. Berengut, “Resonant electronic-bridge excitation of the 235U nuclear transition in ions with chaotic spectra,” Phys. Rev. Lett. 121, 253002 (2018).10.1103/physrevlett.121.253002
|
[46] |
M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott, and D. A. Wisniewski, “A review of nuclear batteries,” Prog. Nucl. Energy 75, 117–148 (2014).10.1016/j.pnucene.2014.04.007
|
[47] |
Z. Movahedian and H. Tavakoli-Anbaran, “Designing a nuclear battery based on the Mo-99 radioactive source soluble in water and aqua regia in order to use in early tests,” Nucl. Sci. Tech. 30, 40 (2019).10.1007/s41365-019-0568-4
|
[48] |
J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
|
[49] |
P. Wang, Z. Gong, S. G. Lee, Y. Shou, Y. Geng, C. Jeon, I. J. Kim, H. W. Lee, J. W. Yoon, J. H. Sung, S. K. Lee, D. Kong, J. Liu, Z. Mei, Z. Cao, Z. Pan, I. W. Choi, X. Yan, C. H. Nam, and W. Ma, “Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity,” Phys. Rev. X 11, 021049 (2021).10.1103/physrevx.11.021049
|
[50] |
R. Hollinger, S. Wang, Y. Wang, A. Moreau, M. G. Capeluto, H. Song, A. Rockwood, E. Bayarsaikhan, V. Kaymak, A. Pukhov, V. N. Shlyaptsev, and J. J. Rocca, “Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses,” Nat. Photonics 14, 607 (2020).10.1038/s41566-020-0666-1
|
[51] |
S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91, 085001 (2003).10.1103/PhysRevLett.91.085001
|
[52] |
X. Zhang, J. Zhao, D. Yuan, C. Fu, J. Bao, L. Chen, J. He, L. Hou, L. Li, Y. Li et al., “Deuteron-deuteron fusion in laser-driven counter-streaming collisionless plasmas,” Phys. Rev. C 96, 055801 (2017).10.1103/physrevc.96.055801
|
[53] |
J. Gunst, Y. Wu, N. Kumar, C. H. Keitel, and A. Pálffy, “Direct and secondary nuclear excitation with x-ray free-electron lasers,” Phys. Plasmas 22, 112706 (2015).10.1063/1.4935294
|
[54] |
Y.-F. He, X.-F. Xi, S.-L. Guo, B. Guo, C.-Y. He, F.-L. Liu, D. Wu, J.-H. Wei, W.-S. Yang, L.-H. Wang, D.-H. Zhang, M.-L. Qiu, G.-F. Wang, C.-Y. Li, and X.-F. Lan, “Calibration of CR-39 solid-state track detectors for study of laser-driven nuclear reactions,” Nucl. Sci. Tech. 31, 42 (2020).10.1007/s41365-020-0749-1
|
[55] |
M. E. Foord, R. F. Heeter, P. A. M. van Hoof, R. S. Thoe, J. E. Bailey, M. E. Cuneo, H.-K. Chung, D. A. Liedahl, K. B. Fournier, G. A. Chandler, V. Jonauskas, R. Kisielius, L. P. Mix, C. Ramsbottom, P. T. Springer, F. P. Keenan, S. J. Rose, and W. H. Goldstein, “Charge-state distribution and Doppler effect in an expanding photoionized plasma,” Phys. Rev. Lett. 93, 055002 (2004).10.1103/PhysRevLett.93.055002
|
[56] |
B. Manz, “Doppler shift in a plasma,” J. Opt. Soc. Am. 57, 1543–1550 (1967).10.1364/josa.57.001543
|
[57] |
J. Chihara, “Interaction of photons with plasmas and liquid metals - Photoabsorption and scattering,” J. Phys.: Condens. Matter 12, 231–247 (2000).10.1088/0953-8984/12/3/303
|
[58] |
J.-M. Chen, J.-P. Yao, Z.-X. Liu, B. Xu, F.-B. Zhang, Y.-X. Wan, W. Chu, Z.-H. Wang, L.-L. Qiao, and Y. Cheng, “Dramatic spectral broadening of ultrafast laser pulses in molecular nitrogen ions,” Chin. Phys. Lett. 36, 104204 (2019).10.1088/0256-307x/36/10/104204
|
[59] |
M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).10.1103/revmodphys.57.783
|