Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Fu Changbo, Zhang Guoqiang, Ma Yugang. New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers[J]. Matter and Radiation at Extremes, 2022, 7(2): 024201. doi: 10.1063/5.0059405
Citation: Fu Changbo, Zhang Guoqiang, Ma Yugang. New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers[J]. Matter and Radiation at Extremes, 2022, 7(2): 024201. doi: 10.1063/5.0059405

New opportunities for nuclear and atomic physics on the femto- to nanometer scale with ultra-high-intensity lasers

doi: 10.1063/5.0059405
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: cbfu@fudan.edu.cn
  • Received Date: 2021-06-09
  • Accepted Date: 2021-11-16
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • There are a number of puzzles concerning physics on the scale of nanometers to femtometers, including the neutron lifetime, the proton charge radius, and the possible existence of the deep Dirac level. With the development of high-intensity laser technology, lasers today can induce extremely strong electromagnetic fields. Electrons in the deep shells of atoms as well as the atomic nucleus itself can be affected by these fields. This may provide a new experimental platform for studies of physical processes on the femto- to nanometer scale, where atomic physics and nuclear physics coexist. In this paper, we review possible new opportunities for studying puzzles on the femto- to nanometer scale using high-intensity lasers.
  • loading
  • [1]
    L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill Publishing Company, New York, 1968).
    [2]
    J.-P. Karr, D. Marchand, and E. Voutier, “The proton size,” Nat. Rev. Phys. 2, 601–614 (2020).10.1038/s42254-020-0229-x
    [3]
    A. T. Yue, M. S. Dewey, D. M. Gilliam, G. L. Greene, A. B. Laptev, J. S. Nico, W. M. Snow, and F. E. Wietfeldt, “Improved determination of the neutron lifetime,” Phys. Rev. Lett. 111, 222501 (2013).10.1103/physrevlett.111.222501
    [4]
    F. E. Wietfeldt and G. L. Greene, “Colloquium: The neutron lifetime,” Rev. Mod. Phys. 83, 1173–1192 (2011).10.1103/revmodphys.83.1173
    [5]
    C. Fu, X. Zhang, and D. Dechang, “Feasibility study on the deep Dirac levels with high-intensity lasers,” Nucl. Phys. Rev. 37, 377–381 (2020).10.11804/NuclPhysRev.37.2019CNPC20
    [6]
    K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).10.1103/physrevlett.78.1667
    [7]
    K. C. Harper, E. G. Moschetta, S. V. Bordawekar, and S. J. Wittenberger, “A laser driven flow chemistry platform for scaling photochemical reactions with visible light,” ACS Cent. Sci. 5, 109–115 (2019).10.1021/acscentsci.8b00728
    [8]
    B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young, “Big-bang nucleosynthesis after Planck,” J. Cosmol. Astropart. Phys. 80, 543 (2020).10.1088/1475-7516/2020/03/010
    [9]
    S. Paul, “The puzzle of neutron lifetime,” Nucl. Instrum. Methods Phys. Res., Sect. A 611, 157–166 (2009).10.1016/j.nima.2009.07.095
    [10]
    W.-B. Ding, Z. Yu, Y. Xu, C.-J. Liu, and T. Bao, “Neutrino emission and cooling of dark-matter-admixed neutron stars,” Chin. Phys. Lett. 36, 049701 (2019).10.1088/0256-307x/36/4/049701
    [11]
    F. E. Wietfeldt, “Measurements of the neutron lifetime,” Atoms 6, 70 (2018).10.3390/atoms6040070
    [12]
    B. Goodman and S. R. Ignjatović, “A simpler solution of the Dirac equation in a Coulomb potential,” Am. J. Phys. 65, 214–221 (1997).10.1119/1.18531
    [13]
    W. Greiner, Relativistic Quantum Mechanics, 3rd ed. (Springer-Verlag Berling Heidelberg, New York, 2000).
    [14]
    [15]
    J. Phillips, R. L. Mills, and X. Chen, “Water bath calorimetric study of excess heat generation in ‘resonant transfer’ plasmas,” J. Appl. Phys. 96, 3095–3102 (2004).10.1063/1.1778212
    [16]
    R. Mills and P. Ray, “Extreme ultraviolet spectroscopy of helium–hydrogen plasma,” J. Phys. D: Appl. Phys. 36, 1535 (2003).10.1088/0022-3727/36/13/316
    [17]
    [18]
    S. Jovićević, N. Sakan, M. Ivković, and N. Konjević, “Spectroscopic study of hydrogen Balmer lines in a microwave-induced discharge,” J. Appl. Phys. 105, 013306 (2009).10.1063/1.3046587
    [19]
    A. Rathke, “A critical analysis of the hydrino model,” New J. Phys. 7, 127 (2005).10.1088/1367-2630/7/1/127
    [20]
    A. Phelps, “Comment on ‘Water bath calorimetric study of excess heat generation in resonant transfer plasmas,,” J. Appl. Phys. 96, 066108 (2005).10.1063/1.2010616
    [21]
    N. Dombey, “The hydrino and other unlikely states,” Phys. Lett. A 360, 62–65 (2006).10.1016/j.physleta.2006.07.069
    [22]
    A. S. de Castro, “Orthogonality criterion for banishing hydrino states from standard quantum mechanics,” Phys. Lett. A 369, 380–383 (2007).10.1016/j.physleta.2007.05.006
    [23]
    R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, “The size of the proton,” Nature 466, 213–216 (2010).10.1038/nature09250
    [24]
    I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor, JR, P. O. Tikkanen, and S. Raman, “Dirac–Fock internal conversion coefficients,” At. Data Nucl. Data Tables 81, 1–334 (2002).10.1006/adnd.2002.0884
    [25]
    A. Pálffy, W. Scheid, and Z. Harman, “Theory of nuclear excitation by electron capture for heavy ions,” Phys. Rev. A 73, 012715 (2006).10.1103/physreva.73.012715
    [26]
    A. Pálffy, Z. Harman, and W. Scheid, “Quantum interference between nuclear excitation by electron capture and radiative recombination,” Phys. Rev. A 75, 012709 (2007).10.1103/physreva.75.012709
    [27]
    S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, and T. Okano, “Observation of nuclear excitation by electron transition in 197Au with synchrotron x rays and an avalanche photodiode,” Phys. Rev. Lett. 85, 1831–1834 (2000).10.1103/physrevlett.85.1831
    [28]
    I. Ahmad, R. W. Dunford, H. Esbensen, D. S. Gemmell, E. P. Kanter, U. Rütt, and S. H. Southworth, “Nuclear excitation by electronic transition in 189Os,” Phys. Rev. C 61, 051304 (2000).10.1103/physrevc.61.051304
    [29]
    P. Morel, J. M. Daugas, G. Gosselin, V. Méot, and D. Gogny, “Nuclear excitation by electronic processes: NEEC and NEET effects,” Nucl. Phys. A 746, 608–612 (2004).10.1016/j.nuclphysa.2004.09.097
    [30]
    M. Morita and K. Otozai, “Theory of nuclear excitation by electron transition (NEET) and experimental evidence in 189Os and 237Np,” Hyperfine Interact. 2, 418 (1976).10.1007/bf01021198
    [31]
    V. I. Goldanskii and V. A. Namiot, “On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion,” Phys. Lett. B 62, 393 (1976).10.1016/0370-2693(76)90665-1
    [32]
    P. Morel, J. M. Daugas, G. Gosselin, V. Méot, and D. Gogny, “Nuclear excitation by electronic processes: NEEC and NEET effects,” AIP Conf. Proc. 769, 1085–1088 (2005).10.1063/1.1945195
    [33]
    V. A. Krutov and V. N. Fomenko, “Influence of electronic shell on gamma radiation of atomic nuclei,” Annalen der Physik 21, 291 (1968).
    [34]
    P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. von der Wense, P. G. Thirolf, T. Pfeifer, J. R. C. López-Urrutia, and A. Pálffy, “Electronic bridge excitation in highly charged 229Th ions,” Phys. Rev. Lett. 124, 192502 (2020).10.1103/physrevlett.124.192502
    [35]
    B. W. J. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nat. Photonics 4, 814 (2010).10.1038/nphoton.2010.239
    [36]
    L. von der Wense, and B. Seiferle, “The 229Th isomer: Prospects for a nuclear optical clock,” Eur. Phys. J. A 56, 277 (2020).10.1140/epja/s10050-020-00263-0
    [37]
    N.-Q. Cai, G.-Q. Zhang, C.-B. Fu, and Y.-G. Ma, “Populating 229Th via two-photon electronic bridge mechanism,” Nucl. Sci. Tech. 32, 59 (2021)10.1007/s41365-021-00900-3.
    [38]
    S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, “27Al+ quantum-logic clock with a systematic uncertainty below 10−18,” Phys. Rev. Lett. 123, 033201 (2019).10.1103/physrevlett.123.033201
    [39]
    K. Beeks, T. Sikorsky, T. Schumm, J. Thielking, M. V. Okhapkin, and E. Peik, “The thorium-229 low-energy isomer and the nuclear clock,” Nat. Rev. Phys. 3, 238–248 (2021).10.1038/s42254-021-00286-6
    [40]
    G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, “Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution,” Phys. Rev. Lett. 120, 103201 (2018).10.1103/physrevlett.120.103201
    [41]
    T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Düllmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, and A. Fleischmann, “Measurement of the 229Th isomer energy with a magnetic microcalorimeter,” Phys. Rev. Lett. 125, 142503 (2020).10.1103/physrevlett.125.142503
    [42]
    E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-229,” Europhys. Lett. 61, 181–186 (2003).10.1209/epl/i2003-00210-x
    [43]
    C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko, “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett. 108, 120802 (2012).10.1103/physrevlett.108.120802
    [44]
    L. von der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier, H.-F. Wirth, C. Mokry, J. Runke, K. Eberhardt, C. E. Düllmann, N. G. Trautmann, and P. G. Thirolf, “Direct detection of the 229Th nuclear clock transition,” Nature 533, 47–51 (2016).10.1038/nature17669
    [45]
    J. C. Berengut, “Resonant electronic-bridge excitation of the 235U nuclear transition in ions with chaotic spectra,” Phys. Rev. Lett. 121, 253002 (2018).10.1103/physrevlett.121.253002
    [46]
    M. A. Prelas, C. L. Weaver, M. L. Watermann, E. D. Lukosi, R. J. Schott, and D. A. Wisniewski, “A review of nuclear batteries,” Prog. Nucl. Energy 75, 117–148 (2014).10.1016/j.pnucene.2014.04.007
    [47]
    Z. Movahedian and H. Tavakoli-Anbaran, “Designing a nuclear battery based on the Mo-99 radioactive source soluble in water and aqua regia in order to use in early tests,” Nucl. Sci. Tech. 30, 40 (2019).10.1007/s41365-019-0568-4
    [48]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630–635 (2021).10.1364/optica.420520
    [49]
    P. Wang, Z. Gong, S. G. Lee, Y. Shou, Y. Geng, C. Jeon, I. J. Kim, H. W. Lee, J. W. Yoon, J. H. Sung, S. K. Lee, D. Kong, J. Liu, Z. Mei, Z. Cao, Z. Pan, I. W. Choi, X. Yan, C. H. Nam, and W. Ma, “Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity,” Phys. Rev. X 11, 021049 (2021).10.1103/physrevx.11.021049
    [50]
    R. Hollinger, S. Wang, Y. Wang, A. Moreau, M. G. Capeluto, H. Song, A. Rockwood, E. Bayarsaikhan, V. Kaymak, A. Pukhov, V. N. Shlyaptsev, and J. J. Rocca, “Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses,” Nat. Photonics 14, 607 (2020).10.1038/s41566-020-0666-1
    [51]
    S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91, 085001 (2003).10.1103/PhysRevLett.91.085001
    [52]
    X. Zhang, J. Zhao, D. Yuan, C. Fu, J. Bao, L. Chen, J. He, L. Hou, L. Li, Y. Li et al., “Deuteron-deuteron fusion in laser-driven counter-streaming collisionless plasmas,” Phys. Rev. C 96, 055801 (2017).10.1103/physrevc.96.055801
    [53]
    J. Gunst, Y. Wu, N. Kumar, C. H. Keitel, and A. Pálffy, “Direct and secondary nuclear excitation with x-ray free-electron lasers,” Phys. Plasmas 22, 112706 (2015).10.1063/1.4935294
    [54]
    Y.-F. He, X.-F. Xi, S.-L. Guo, B. Guo, C.-Y. He, F.-L. Liu, D. Wu, J.-H. Wei, W.-S. Yang, L.-H. Wang, D.-H. Zhang, M.-L. Qiu, G.-F. Wang, C.-Y. Li, and X.-F. Lan, “Calibration of CR-39 solid-state track detectors for study of laser-driven nuclear reactions,” Nucl. Sci. Tech. 31, 42 (2020).10.1007/s41365-020-0749-1
    [55]
    M. E. Foord, R. F. Heeter, P. A. M. van Hoof, R. S. Thoe, J. E. Bailey, M. E. Cuneo, H.-K. Chung, D. A. Liedahl, K. B. Fournier, G. A. Chandler, V. Jonauskas, R. Kisielius, L. P. Mix, C. Ramsbottom, P. T. Springer, F. P. Keenan, S. J. Rose, and W. H. Goldstein, “Charge-state distribution and Doppler effect in an expanding photoionized plasma,” Phys. Rev. Lett. 93, 055002 (2004).10.1103/PhysRevLett.93.055002
    [56]
    B. Manz, “Doppler shift in a plasma,” J. Opt. Soc. Am. 57, 1543–1550 (1967).10.1364/josa.57.001543
    [57]
    J. Chihara, “Interaction of photons with plasmas and liquid metals - Photoabsorption and scattering,” J. Phys.: Condens. Matter 12, 231–247 (2000).10.1088/0953-8984/12/3/303
    [58]
    J.-M. Chen, J.-P. Yao, Z.-X. Liu, B. Xu, F.-B. Zhang, Y.-X. Wan, W. Chu, Z.-H. Wang, L.-L. Qiao, and Y. Cheng, “Dramatic spectral broadening of ultrafast laser pulses in molecular nitrogen ions,” Chin. Phys. Lett. 36, 104204 (2019).10.1088/0256-307x/36/10/104204
    [59]
    M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).10.1103/revmodphys.57.783
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (366) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return