Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhang Tingting, Wang Yuechao, Xian Jiawei, Wang Shuaichuang, Fang Jun, Duan Suqing, Gao Xingyu, Song Haifeng, Liu Haifeng. Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium[J]. Matter and Radiation at Extremes, 2021, 6(6): 068401. doi: 10.1063/5.0059360
Citation: Zhang Tingting, Wang Yuechao, Xian Jiawei, Wang Shuaichuang, Fang Jun, Duan Suqing, Gao Xingyu, Song Haifeng, Liu Haifeng. Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium[J]. Matter and Radiation at Extremes, 2021, 6(6): 068401. doi: 10.1063/5.0059360

Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium

doi: 10.1063/5.0059360
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: liu_haifeng@iapcm.ac.cn
  • Received Date: 2021-06-08
  • Accepted Date: 2021-08-26
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • We report significant differences in high-pressure properties of vanadium at zero temperature and finite temperature when different projector augmented wave (PAW) potentials are used in simulations based on density functional theory. When a PAW potential with only five electrons taken as valence electrons is used, the cold pressures in the high-pressure region are seriously underestimated, and an abnormality occurs in the melting curve of vanadium at about 400 GPa. We show that the reason for these discrepancies lies in the differences in the descriptions of the interatomic force, electron dispersion, and anisotropy of electron bonding obtained from different PAW potentials at high pressure, which lead to striking differences in the mechanical stability of the system. We propose a procedure for selecting PAW potentials suitable for simulations at high temperature and high pressure. Our results provide valuable guidance for future simulations of thermodynamic properties under extreme conditions.
  • loading
  • [1]
    H.-K. Mao, B. Chen, J. Chen et al., “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005
    [2]
    H. Liu, H. Song, Q. Zhang et al., “Validation for equation of state in wide regime: Copper as prototype,” Matter Radiat. Extremes 1, 123 (2016).10.1016/j.mre.2016.03.002
    [3]
    J. Nilsen, A. L. Kritcher, M. E. Martin et al., “Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100 s of Mbar using spherically converging shock waves in a NIF hohlraum,” Matter Radiat. Extremes 5, 018401 (2020).10.1063/1.5131748
    [4]
    S. Zhang, H. Wang, W. Kang, P. Zhang, and X. T. He, “Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212
    [5]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).10.1103/physrev.136.b864
    [6]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).10.1103/physrev.140.a1133
    [7]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
    [8]
    P. E. Blöchl, C. J. Först, and J. Schimpl, “Projector augmented wave method: Ab initio molecular dynamics with full wave functions,” Bull. Mater. Sci. 26, 33 (2003).10.1007/bf02712785
    [9]
    N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng, “Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids,” Phys. Rev. B 55, 2005 (1997).10.1103/physrevb.55.2005
    [10]
    A. R. Tackett, N. A. W. Holzwarth, and G. E. Matthews, “A projector augmented wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis,” Comput. Phys. Commun. 135, 348 (2001).10.1016/s0010-4655(00)00241-1
    [11]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).10.1103/physrevb.59.1758
    [12]
    S. Blügel, W. Kromen, and K. Schroeder, in Spring Meeting of the German Physical Society 2001, Hamburg, Germany, 2001.
    [13]
    F. Bruneval, J.-P. Crocombette, X. Gonze, B. Dorado, M. Torrent, and F. Jollet, “Consistent treatment of charged systems within periodic boundary conditions: The projector augmented-wave and pseudopotential methods revisited,” Phys. Rev. B 89, 045116 (2014).10.1103/physrevb.89.045116
    [14]
    K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, “Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals,” Crit. Rev. Solid State Mater. Sci. 39, 1–24 (2014).10.1080/10408436.2013.772503
    [15]
    K. Lejaeghere, G. Bihlmayer, T. Björkman et al., “Reproducibility in density functional theory calculations of solids,” Science 351(6280), aad3000 (2016).10.1126/science.aad3000
    [16]
    K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for high-throughput DFT calculations,” Comput. Mater. Sci. 81, 446–452 (2014).10.1016/j.commatsci.2013.08.053
    [17]
    M. Topsakal and R. M. Wentzcovitch, “Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu),” Comput. Mater. Sci. 95, 263–270 (2014).10.1016/j.commatsci.2014.07.030
    [18]
    C. Cazorla, M. J. Gillan, S. Taioli, and D. Alfè, “Ab initio melting curve of molybdenum by the phase coexistence method,” J. Chem. Phys. 126, 194502 (2007).10.1063/1.2735324
    [19]
    D. G. Pettifor, “Theory of energy bands and related properties of 4d transition metals. I. Band parameters and their volume dependence,” J. Phys. F: Met. Phys. 7, 613 (1977).10.1088/0305-4608/7/4/013
    [20]
    J. A. Moriarty, “Ultrahigh-pressure structural phase transitions in Cr, Mo, and W,” Phys. Rev. B 45, 2004 (1992).10.1103/physrevb.45.2004
    [21]
    G. B. Grad et al., “Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo,” Phys. Rev. B 62, 12743 (2000).10.1103/physrevb.62.12743
    [22]
    G. Kresse, M. Marsman, and J. Furthmüller, VASP the GUIDE, Wien, Austria, 2018, p. 181, http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html, October 29, 2018 version.
    [23]
    A. Landa, P. Soderlind, and L. H. Yang, “Ab initio phase stability at high temperatures and pressures in the V-Cr system,” Phys. Rev. B 89, 020101(R) (2014).10.1103/physrevb.89.020101
    [24]
    T. Zhang, S. Wang, H. Song, S. Duan, and H. Liu, “Melting curve of vanadium up to 470 GPa simulated by ab initio molecular dynamics,” J. Appl. Phys. 126, 205901 (2019).10.1063/1.5124520
    [25]
    D. Errandonea, S. G. MacLeod, L. Burakovsky, D. Santamaria-Perez, J. E. Proctor, H. Cynn, and M. Mezouar, “Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions,” Phys. Rev. B 100, 094111 (2019).10.1103/physrevb.100.094111
    [26]
    P. F. Weck, P. Kalita, T. Ao, S. D. Crockett, S. Root, and K. R. Cochrane, “Shock compression of vanadium at extremes: Theory and experiment,” Phys. Rev. B 102, 184109 (2020).10.1103/physrevb.102.184109
    [27]
    Y. Zhang, Y. Tan, H. Y. Geng, N. P. Salke, Z. Gao, J. Li, T. Sekine, Q. Wang, E. Greenberg, V. B. Prakapenka, and J.-F. Lin, “Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory,” Phys. Rev. B 102, 214104 (2020).10.1103/physrevb.102.214104
    [28]
    G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558 (1993).10.1103/physrevb.47.558
    [29]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
    [30]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
    [31]
    A. H. MacDonald, W. E. Picket, and D. D. Koelling, “A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions,” J. Phys. C: Solid State Phys. 13, 2675 (1980).10.1088/0022-3719/13/14/009
    [32]
    E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, “Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule,” Phys. Rev. B 24, 864 (1981).10.1103/physrevb.24.864
    [33]
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001), ISBN: 3-9501031-1-2.
    [34]
    K. Schwarz, “DFT calculations of solids with LAPW and WIEN2k,” J. Solid State Chem. 176, 319 (2003).10.1016/s0022-4596(03)00213-5
    [35]
    D. M. Ceperley, “Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions,” Phys. Rev. B 18, 3126 (1978).10.1103/physrevb.18.3126
    [36]
    D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566 (1980).10.1103/physrevlett.45.566
    [37]
    R. O. Jones and O. Gunnarsson, “The density functional formalism, its applications and prospects,” Rev. Mod. Phys. 61, 689 (1989).10.1103/revmodphys.61.689
    [38]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996); 10.1103/physrevlett.77.3865
    [39]
    J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B 33, 8800(R) (1986); 10.1103/physrevb.33.8800
    [40]
    A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A 38, 3098 (1988).10.1103/physreva.38.3098
    [41]
    J. P. Perdew and Y. Wang, “Pair-distribution function and its coupling-constant average for the spin-polarized electron gas,” Phys. Rev. B 46, 12947 (1992); 10.1103/physrevb.46.12947
    [42]
    N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. A 137, A1441 (1965).10.1103/physrev.137.a1441
    [43]
    Y. Ding, R. Ahuja, J. Shu et al., “Structural phase transition of vanadium at 69 GPa,” Phys. Rev. Lett. 98, 085502 (2007).10.1103/physrevlett.98.085502
    [44]
    B. Lee, R. E. Rudd, J. E. Klepeis, P. Söderlind, and A. Landa, “Theoretical confirmation of a high-pressure rhombohedral phase in vanadium metal,” Phys. Rev. B 75, 180101(R) (2007).10.1103/physrevb.75.180101
    [45]
    Y. X. Wang, Q. Wu, X. R. Chen, and H. Y. Geng, “Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: First-principles investigations,” Sci. Rep. 6, 32419 (2016).10.1038/srep32419
    [46]
    A. Belonoshko, N. Skorodumova, A. Rosengren, and B. Johansson, “Melting and critical superheating,” Phys. Rev. B 73, 012201 (2006).10.1103/physrevb.73.012201
    [47]
    A. B. Belonoshko, L. Burakovsky, S. P. Chen, B. Johansson, A. S. Mikhaylushkin, D. L. Preston, S. I. Simak, and D. C. Swift, “Molybdenum at high pressure and temperature: Melting from another solid phase,” Phys. Rev. Lett. 100, 135701 (2008).10.1103/physrevlett.100.135701
    [48]
    A. Landa, J. Klepeis, P. Söderlind, I. Naumov, O. Velikokhatnyi, L. Vitos, and A. Ruban, “Ab initio calculations of elastic constants of the bcc V–Nb system at high pressures,” J. Phys. Chem. Solids 67, 2056 (2006).10.1016/j.jpcs.2006.05.027
    [49]
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), p. 648.
    [50]
    Y. Yu, Y. Tan, C. Dai, X. Li, Y. Li, Q. Wu, and H. Tan, “Phase transition and strength of vanadium under shock compression up to 88 GPa,” Appl. Phys. Lett. 105, 201910 (2014).10.1063/1.4902374
    [51]
    M. A. Roldan, V. López-Flores, M. D. Alcala, A. Ortega, and C. Real, “Mechanochemical synthesis of vanadium nitride,” J. Eur. Ceram. Soc. 30, 2099 (2010).10.1016/j.jeurceramsoc.2010.04.008
    [52]
    K. Takemura, in Proceedings of the International Conference on High Pressure Science and Technology (AIRAPT-17), Honolulu, HA, edited by M. H. Manghnani, W. J. Nellis, and M. F. Nicol (Plenum, New York, 1999), pp. 443–444.
    [53]
    D. A. Young, H. Cynn, P. Söderlind, and A. Landa, “Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa,” J. Phys. Chem. Ref. Data 45, 043101 (2016).10.1063/1.4963086
    [54]
    P. H. Berens, D. H. J. Mackay, G. M. White, and K. R. Wilson, “Thermodynamics and quantum corrections from molecular dynamics for liquid water,” J. Chem. Phys. 79, 2375 (1983).10.1063/1.446044
    [55]
    J. W. Zwanziger, “Computation of NMR observables: Consequences of projector-augmented wave sphere overlap,” Solid State Nucl. Magn. Reson. 80, 14–18 (2016).10.1016/j.ssnmr.2016.10.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (206) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return