Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Chen Mengting, Guo Songhao, Bu Kejun, Lee Sujin, Luo Hui, Wang Yiming, Liu Bingyan, Yan Zhipeng, Dong Hongliang, Yang Wenge, Ma Biwu, Lü Xujie. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12[J]. Matter and Radiation at Extremes, 2021, 6(5): 058401. doi: 10.1063/5.0058821
Citation: Chen Mengting, Guo Songhao, Bu Kejun, Lee Sujin, Luo Hui, Wang Yiming, Liu Bingyan, Yan Zhipeng, Dong Hongliang, Yang Wenge, Ma Biwu, Lü Xujie. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12[J]. Matter and Radiation at Extremes, 2021, 6(5): 058401. doi: 10.1063/5.0058821

Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12

doi: 10.1063/5.0058821
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xujie.lu@hpstar.ac.cn
  • Received Date: 2021-06-02
  • Accepted Date: 2021-08-06
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • Zero-dimensional (0D) hybrid metal halides are under intensive investigation owing to their unique physical properties, such as the broadband emission from highly localized excitons that is promising for white-emitting lighting. However, fundamental understanding of emission variations and structure–property relationships is still limited. Here, by using pressure processing, we obtain robust exciton emission in 0D (C9NH20)6Pb3Br12 at room temperature that can survive to 80 GPa, the recorded highest value among all the hybrid metal halides. In situ experimental characterization and first-principles calculations reveal that the pressure-induced emission is mainly caused by the largely suppressed phonon-assisted nonradiative pathway. Lattice compression leads to phonon hardening, which considerably weakens the exciton–phonon interaction and thus enhances the emission. The robust emission is attributed to the unique structure of separated spring-like [Pb3Br12]6− trimers, which leads to the outstanding stability of the optically active inorganic units. Our findings not only reveal abnormally robust emission in a 0D metal halide, but also provide new insight into the design and optimization of local structures of trimers and oligomers in low-dimensional hybrid materials.
  • loading
  • [1]
    Y. Chen, Y. Lei, Y. Li et al., “Strain engineering and epitaxial stabilization of halide perovskites,” Nature 577, 209–215 (2020).10.1038/s41586-019-1868-x
    [2]
    X.-K. Liu, W. Xu, S. Bai et al., “Metal halide perovskites for light-emitting diodes,” Nat. Mater. 20, 10–21 (2020).10.1038/s41563-020-0784-7
    [3]
    M. M. Lee, J. Teuscher, T. Miyasaka et al., “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).10.1126/science.1228604
    [4]
    H. Tsai, W. Nie, J.-C. Blancon et al., “High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells,” Nature 536, 312–317 (2016).10.1038/nature18306
    [5]
    Z. Yuan, C. Zhou, Y. Tian et al., “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051–14057 (2017).10.1038/ncomms14051
    [6]
    C. Zhou, L. Xu, S. Lee et al., “Recent advances in luminescent zero-dimensional organic metal halide hybrids,” Adv. Opt. Mater. 2, 2001766 (2020).10.1002/adom.202001766
    [7]
    Q. Fu, X. Tang, B. Huang et al., “Recent progress on the long-term stability of perovskite solar cells,” Adv. Sci. 5, 1700387 (2018).10.1002/advs.201700387
    [8]
    C. Zhou, H. Lin, Y. Tian et al., “Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency,” Chem. Sci. 9, 586–593 (2018).10.1039/c7sc04539e
    [9]
    H. Lin, C. Zhou, Y. Tian et al., “Low-dimensional organometal halide perovskites,” ACS Energy Lett. 3, 54–62 (2018).10.1021/acsenergylett.7b00926
    [10]
    M. Li and Z. Xia, “Recent progress of zero-dimensional luminescent metal halides,” Chem. Soc. Rev. 50, 2626–2662 (2021).10.1039/d0cs00779j
    [11]
    L.-K. Gong, J.-R. Li, Z.-F. Wu et al., “Enhancing the phosphorescence of hybrid metal halides through molecular sensitization,” J. Mater. Chem. C 7, 9803–9807 (2019).10.1039/c9tc03067k
    [12]
    B. Febriansyah, C. S. D. Neo, D. Giovanni et al., “Targeted synthesis of trimeric organic–bromoplumbate hybrids that display intrinsic, highly Stokes-shifted, broadband emission,” Chem. Mater. 32, 4431–4441 (2020).10.1021/acs.chemmater.9b03925
    [13]
    J. Zhou, M. Li, L. Ning et al., “Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies,” J. Phys. Chem. Lett. 10, 1337–1341 (2019).10.1021/acs.jpclett.9b00238
    [14]
    Z. Ma, Z. Liu, S. Lu et al., “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).10.1038/s41467-018-06840-8
    [15]
    S. Li, J. Luo, J. Liu et al., “Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications,” J. Phys. Chem. Lett. 10, 1999–2007 (2019).10.1021/acs.jpclett.8b03604
    [16]
    S. Guo, K. Bu, J. Li et al., “Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features,” J. Am. Chem. Soc. 143, 2545–2551 (2021).10.1021/jacs.0c11730
    [17]
    M. Li, T. Liu, Y. Wang et al., “Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies,” Matter Radiat. Extremes 5, 018201 (2020).10.1063/1.5133653
    [18]
    C. Pei and L. Wang, “Recent progress on high-pressure and high-temperature studies of fullerenes and related materials,” Matter Radiat. Extremes 4, 028201 (2019).10.1063/1.5086310
    [19]
    C. S. Yoo, “Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids,” Matter Radiat. Extremes 5, 018202, (2020).10.1063/1.5127897
    [20]
    X. Lü, C. Stoumpos, Q. Hu et al., “Regulating off-centering distortion maximizes photoluminescence in halide perovskites,” Natl. Sci. Rev. (published online) (2020).10.1093/nsr/nwaa288
    [21]
    A. Navrotsky, “Pressure-induced structural changes cause large enhancement of photoluminescence in halide perovskites: A quantitative relationship,” Natl. Sci. Rev. (published online) (2021).10.1093/nsr/nwab041
    [22]
    H. K. Mao and W. L. Mao, “Key problems of the four-dimensional earth system,” Matter Radiat. Extremes 5, 038102 (2020).10.1063/1.5139023
    [23]
    H. K. Mao, B. Chen, H. Gou et al., “2020—Transformative science in the pressure dimension,” Matter Radiat. Extremes 6, 013001 (2020).10.1063/5.0040607
    [24]
    Y. Shi, Z. Ma, D. Zhao et al., “Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites,” J. Am. Chem. Soc. 141, 6504–6508 (2019).10.1021/jacs.9b02568
    [25]
    S. Guo, Y. Zhao, K. Bu et al., “Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7,” Angew. Chem., Int. Ed. 59, 17533–17539 (2020).10.1002/anie.202001635
    [26]
    S. Lee, C. Zhou, J. Neu et al., “Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties,” Chem. Mater. 32, 374–380 (2020).10.1021/acs.chemmater.9b03893
    [27]
    B. J. Foley, D. L. Marlowe, K. Sun et al., “Temperature dependent energy levels of methylammonium lead iodide perovskite,” Appl. Phys. Lett. 106, 243904 (2015).10.1063/1.4922804
    [28]
    J. G. Santaclara, F. Kapteijn, J. Gascon et al., “Understanding metal–organic frameworks for photocatalytic solar fuel production,” CrystEngComm 19, 4118–4125 (2017).10.1039/c7ce00006e
    [29]
    A. Jaffe, Y. Lin, W. L. Mao et al., “Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3,” J. Am. Chem. Soc. 139, 4330–4333 (2017).10.1021/jacs.7b01162
    [30]
    H. Zhu, T. Cai, M. Que et al., “Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals,” J. Phys. Chem. Lett. 9, 4199–4205 (2018).10.1021/acs.jpclett.8b01852
    [31]
    G. Liu, L. Kong, P. Guo et al., “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2, 2518–2524 (2017).10.1021/acsenergylett.7b00807
    [32]
    Y. Yuan, X. Liu, X. Ma et al., “Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure,” Adv. Sci. 6, 1900240 (2019).10.1002/advs.201900240
    [33]
    Q. Li, Y. Wang, W. Pan et al., “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem., Int. Ed. 129, 16185–16189 (2017).10.1002/ange.201708684
    [34]
    X. Ren, X. Yan, A. S. Ahmad et al., “Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite,” J. Phys. Chem. C 123, 15204–15208 (2019).10.1021/acs.jpcc.9b02854
    [35]
    Q. Li, Z. Chen, M. Li et al., “Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters,” Angew. Chem., Int. Ed. 60, 2583–2587 (2020).10.1002/anie.202009237
    [36]
    L. Zhang, C. Liu, Y. Lin et al., “Tuning optical and electronic properties in low-toxicity organic–inorganic hybrid (CH3NH3)3Bi2I9 under high pressure,” J. Phys. Chem. Lett. 10, 1676–1683 (2019).10.1021/acs.jpclett.9b00595
    [37]
    H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).10.1107/s0021889869006558
    [38]
    F. Birch, “Finite elastic strain of cubic crystals,” Phys. Rev. 71, 809–824 (1947).10.1103/physrev.71.809
    [39]
    Q. Li, Z. Chen, B. Yang et al., “Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units,” J. Am. Chem. Soc. 142, 1786–1791 (2020).10.1021/jacs.9b13419
    [40]
    H. Liu, Y. Gu, Y. Dai et al., “Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energy-transfer suppression,” J. Am. Chem. Soc. 142, 1153–1158 (2020).10.1021/jacs.9b11080
    [41]
    D. C. Hooper, A. G. Mark, C. Kuppe et al., “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29, 1605110 (2017).10.1002/adma.201605110
    [42]
    Y. Wang, S. Guo, H. Luo et al., “Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss,” J. Am. Chem. Soc. 142, 16001–16006 (2020).10.1021/jacs.0c07166
    [43]
    Z. Ma, F. Li, L. Sui et al., “Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure,” Adv. Opt. Mater. 8, 2000713 (2020).10.1002/adom.202000713
    [44]
    L. Zhang, C. Liu, L. Wang et al., “Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9,” Angew. Chem., Int. Ed. 57, 11213–11217 (2018).10.1002/anie.201804310
    [45]
    T. Yin, B. Liu, J. Yan et al., “Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes,” J. Am. Chem. Soc. 141, 1235–1241 (2019).10.1021/jacs.8b07765
    [46]
    L. Zhang, L. Wu, K. Wang et al., “Pressure-induced broadband emission of 2D organic–inorganic hybrid perovskite,” Adv. Sci. 6, 1801628 (2019).10.1002/advs.201801628
    [47]
    S. Liu, S. Sun, C. K. Gan et al., “Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation,” Sci. Adv. 5, eaav9445 (2019).10.1126/sciadv.aav9445
    [48]
    Y. Chen, R. Fu, L. Wang et al., “Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure,” J. Mater. Chem. A 7, 6357–6362 (2019).10.1039/c8ta11992a
    [49]
    Y. Fang, L. Zhang, L. Wu et al., “Pressure‐induced emission (PIE) and phase transition of a two‐dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+),” Angew. Chem., Int. Ed. 58, 15249 (2019).10.1002/ange.201906311
    [50]
    K. Matsuishi, T. Ishihara, S. Onari et al., “Optical properties and structural phase transitions of lead-halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure,” Phys. Status Solidi B 241, 3328–3333 (2004).10.1002/pssb.200405229
    [51]
    T. Yin, Y. Fang, W. K. Chong et al., “High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates,” Adv. Mater. 30, 1705017 (2018).10.1002/adma.201705017
    [52]
    S. Jiang, Y. Fang, R. Li et al., “Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite,” Angew. Chem., Int. Ed. 55, 6540–6544 (2016).10.1002/anie.201601788
    [53]
    A. Jaffe, Y. Lin, C. M. Beavers et al., “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2, 201–209 (2016).10.1021/acscentsci.6b00055
    [54]
    Z. Ma, F. Li, G. Qi et al., “Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure,” Nanoscale 11, 820–825 (2019).10.1039/c8nr05684f
    [55]
    L. Zhang, Y. Fang, L. Sui et al., “Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure,” ACS Energy Lett. 4, 2975–2982 (2019).10.1021/acsenergylett.9b02155
    [56]
    M. E. Kamminga, H.-H. Fang, M. R. Filip et al., “Confinement effects in low-dimensional lead iodide perovskite hybrids,” Chem. Mater. 28, 4554–4562 (2016).10.1021/acs.chemmater.6b00809
    [57]
    C. Zhou, H. Lin, M. Worku et al., “Blue emitting single crystalline assembly of metal halide clusters,” J. Am. Chem. Soc. 140, 13181–13184 (2018).10.1021/jacs.8b07731
    [58]
    J. M. Hoffman, X. Che, S. Sidhik et al., “From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer,” J. Am. Chem. Soc. 141, 10661–10676 (2019).10.1021/jacs.9b02846
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (457) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return