Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Ferri Sandrine, Peyrusse Olivier, Calisti Annette. Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields[J]. Matter and Radiation at Extremes, 2022, 7(1): 015901. doi: 10.1063/5.0058552
Citation: Ferri Sandrine, Peyrusse Olivier, Calisti Annette. Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields[J]. Matter and Radiation at Extremes, 2022, 7(1): 015901. doi: 10.1063/5.0058552

Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields

doi: 10.1063/5.0058552
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: sandrine.ferri@univ-amu.fr
  • Received Date: 2021-05-31
  • Accepted Date: 2021-11-03
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • We present a Stark–Zeeman spectral line-shape model and the associated numerical code, PPPB, designed to provide fast and accurate line shapes for arbitrary atomic systems for a large range of plasma conditions. PPPB is based on the coupling of the PPP code—a Stark-broadened spectral line-shape code developed for multi-electron ion spectroscopy in hot dense plasmas—and the MASCB code developed recently to generate B-field-dependent atomic physics. The latter provides energy levels, statistical weights, and reduced matrix elements of multi-electron radiators by diagonalizing the atomic Hamiltonian that includes the well know B-dependent term. These are then used as inputs to PPP working in the standard line-broadening approach, i.e., using the quasi-static ion and impact electron approximations. The effects of ion dynamics are introduced by means of the frequency fluctuation model, and the physical model of electron broadening is based on the semi-classical impact approximation including the effects of a strong collision term, interference, and cyclotron motion. Finally, to account for polarization effects, the output profiles are calculated for a given angle of observation with respect to the direction of the magnetic field. The potential of this model is presented through Stark–Zeeman spectral line-shape calculations performed for various experimental conditions.
  • loading
  • [1]
    H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).
    [2]
    H. Nguyen-Hoe, H.-W. Drawin, and L. Herman, “Effet d’un champ magnetique uniforme sur les profils des raies de l’hydrogene,” J. Quant. Spectrosc. Radiat. Transfer 7, 429–474 (1967).10.1016/0022-4073(67)90042-8
    [3]
    M. S. Murillo, M. E. Cox, and S. M. Carr, “Magnetized plasma microfield studies by molecular dynamics simulation,” J. Quant. Spectrosc. Radiat. Transfer 58, 811–820 (1997).10.1016/s0022-4073(97)00086-1
    [4]
    M. A. Gigosos and M. Á. González, “Comment on ‘A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines,’” J. Quant. Spectrosc. Radiat. Transfer 105, 533–535 (2007).10.1016/j.jqsrt.2006.11.004
    [5]
    E. Stambulchik, K. Tsigutkin, and Y. Maron, “Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude,” Phys. Rev. Lett. 98, 225001 (2007).10.1103/physrevlett.98.225001
    [6]
    J. Rosato, D. Reiter, V. Kotov, P. Börner, H. Capes, Y. Marandet, R. Stamm, S. Ferri, L. Godbert-Mouret, M. Koubiti et al., “Line shape modeling for radiation transport investigations in magnetic fusion plasmas,” High Energy Density Phys. 5, 93–96 (2009).10.1016/j.hedp.2009.03.004
    [7]
    G. Mathys, “The transfer of polarized light in Stark broadened hydrogen lines in the presence of a magnetic field,” J. Quant. Spectrosc. Radiat. Transfer 44, 143–151 (1990).10.1016/0022-4073(90)90093-l
    [8]
    A. Derevianko and E. Oks, “Generalized theory of ion impact broadening in magnetized plasmas and its applications for tokamaks,” Phys. Rev. Lett. 73, 2059 (1994).10.1103/physrevlett.73.2059
    [9]
    S. Brillant, G. Mathys, and C. Stehle, “Hydrogen line formation in dense magnetized plasmas,” Astron. Astrophys. 339, 286–297 (1998).
    [10]
    S. Günter and A. Könies, “Diagnostics of dense plasmas from the profile of hydrogen spectral lines in the presence of a magnetic field,” J. Quant. Spectrosc. Radiat. Transfer 62, 425–431 (1999).10.1016/s0022-4073(98)00115-0
    [11]
    L. Godbert-Mouret, M. Koubiti, R. Stamm, K. Touati, B. Felts, H. Capes, Y. Corre, R. Guirlet, and C. De Michelis, “Spectroscopy of magnetized plasmas,” J. Quant. Spectrosc. Radiat. Transfer 71, 365–372 (2001).10.1016/s0022-4073(01)00082-6
    [12]
    M. L. Adams, R. W. Lee, H. A. Scott, H. K. Chung, and L. Klein, “Complex atomic spectral line shapes in the presence of an external magnetic field,” Phys. Rev. E 66, 066413 (2002).10.1103/PhysRevE.66.066413
    [13]
    X.-d. Li, S.-s. Han, C. Wang, and Z.-z. Xu, “Ultrahigh magnetic field diagnostic with spectral profile calculation,” J. Quant. Spectrosc. Radiat. Transfer 76, 31–43 (2003).10.1016/s0022-4073(02)00044-4
    [14]
    S. Ferri, A. Calisti, C. Mossé, L. Mouret, B. Talin, M. A. Gigosos, M. A. González, and V. Lisitsa, “Frequency-fluctuation model applied to Stark–Zeeman spectral line shapes in plasmas,” Phys. Rev. E 84, 026407 (2011).10.1103/PhysRevE.84.026407
    [15]
    C. A. Iglesias, “Efficient algorithms for Stark–Zeeman spectral line shape calculations,” High Energy Density Phys. 9, 737–744 (2013).10.1016/j.hedp.2013.08.003
    [16]
    F. Gilleron and J.-C. Pain, “ZEST: A fast code for simulating Zeeman-Stark line-shape functions,” Atoms 6, 11 (2018).10.3390/atoms6010011
    [17]
    J. J. Santos, M. Bailly-Grandvaux, M. Ehret, A. V. Arefiev, D. Batani, F. N. Beg, A. Calisti, S. Ferri, R. Florido, P. Forestier-Colleoni et al., “Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics,” Phys. Plasmas 25, 056705 (2018).10.1063/1.5018735
    [18]
    C. Liu, K. Matsuo, S. Ferri, H.-K. Chung, S. Lee, S. Sakata, K. F. F. Law, H. Morita, B. Pollock, J. Moody et al., “Design of Zeeman spectroscopy experiment with magnetized silicon plasma generated in the laboratory,” High Energy Density Phys. 33, 100710 (2019).10.1016/j.hedp.2019.100710
    [19]
    R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981), Vol. 3.
    [20]
    I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, “An atomic multiconfigurational Dirac-Fock package,” Comput. Phys. Commun. 21, 207–231 (1980).10.1016/0010-4655(80)90041-7
    [21]
    M. F. Gu, “The flexible atomic code,” Can. J. Phys. 86, 675–689 (2008).10.1139/p07-197
    [22]
    [23]
    B. Cagnac and J. C. P. Peyroula, Physique Atomique, Tome 2: Applications de la Mecanique Quantique (Bordas, 1982).
    [24]
    J. C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill (1960).
    [25]
    M. S. Litsarev and O. V. Ivanov, “Multiconfiguration Hartree-Fock method: Direct diagonalization for the construction of a multielectron basis,” J. Exp. Theor. Phys. 111, 22–26 (2010).10.1134/s1063776110070034
    [26]
    E. G. Hill, “Calculation of unit tensor operators using a restricted set of slater determinants,” J. Quant. Spectrosc. Radiat. Transfer 140, 1–6 (2014).10.1016/j.jqsrt.2014.02.009
    [27]
    E. U. Condon, E. Condon, and G. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1935).
    [28]
    J. D. Talman and W. F. Shadwick, “Optimized effective atomic central potential,” Phys. Rev. A 14, 36 (1976).10.1103/physreva.14.36
    [29]
    J. B. Krieger, Y. Li, and G. J. Iafrate, “Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory,” Phys. Rev. A 46, 5453 (1992).10.1103/physreva.46.5453
    [30]
    R. H. Garstang and S. B. Kemic, “Hydrogen and helium spectra in large magnetic fields,” Astrophys. Space Sci. 31, 103–115 (1974).10.1007/bf00642604
    [31]
    S. O. Kepler, I. Pelisoli, S. Jordan, S. J. Kleinman, D. Koester, B. Külebi, V. Peçanha, B. G. Castanheira, A. Nitta, J. E. S. Costa et al., “Magnetic white dwarf stars in the sloan digital sky survey,” Mon. Not. R. Astron. Soc. 429, 2934–2944 (2013).10.1093/mnras/sts522
    [32]
    J. Rosato, “Hydrogen line shapes in plasmas with large magnetic fields,” Atoms 8, 74 (2020).10.3390/atoms8040074
    [33]
    A. Raji, J. Rosato, R. Stamm, and Y. Marandet, “New analysis of Balmer line shapes in magnetic white dwarf atmospheres,” Eur. Phys. J. D 75(2), 1–4 (2021).10.1140/epjd/s10053-021-00067-x
    [34]
    D. R. Inglis and E. Teller, “Ionic depression of series limits in one-electron spectra,” Astrophys. J. 90, 439 (1939).10.1086/144118
    [35]
    T. Ott and M. Bonitz, “Diffusion in a strongly coupled magnetized plasma,” Phys. Rev. Lett. 107, 135003 (2011).10.1103/physrevlett.107.135003
    [36]
    S. D. Baalrud and J. Daligault, “Transport regimes spanning magnetization-coupling phase space,” Phys. Rev. E 96, 043202 (2017).10.1103/PhysRevE.96.043202
    [37]
    D. J. Bernstein, T. Lafleur, J. Daligault, and S. D. Baalrud, “Friction force in strongly magnetized plasmas,” Phys. Rev. E 102, 041201 (2020).10.1103/PhysRevE.102.041201
    [38]
    E. Oks, “Influence of magnetic-field-caused modifications of trajectories of plasma electrons on spectral line shapes: Applications to magnetic fusion and white dwarfs,” J. Quant. Spectrosc. Radiat. Transfer 171, 15–27 (2016).10.1016/j.jqsrt.2015.10.026
    [39]
    J. Rosato, S. Ferri, and R. Stamm, “Influence of helical trajectories of perturbers on Stark line shapes in magnetized plasmas,” Atoms 6, 12 (2018).10.3390/atoms6010012
    [40]
    S. Alexiou, “Line shapes in a magnetic field: Trajectory modifications I: Electrons,” Atoms 7, 52 (2019).10.3390/atoms7020052
    [41]
    S. Alexiou, “Line shapes in a magnetic field: Trajectory modifictions II: Full collision-time statistics,” Atoms 7, 94 (2019).10.3390/atoms7040094
    [42]
    C. Deutsch, “Electric microfield distributions in plasmas in presence of a magnetic field,” Phys. Lett. A 30, 381–382 (1969).10.1016/0375-9601(69)90718-x
    [43]
    [44]
    A. Calisti, F. Khelfaoui, R. Stamm, B. Talin, and R. W. Lee, “Model for the line shapes of complex ions in hot and dense plasmas,” Phys. Rev. A 42, 5433 (1990).10.1103/physreva.42.5433
    [45]
    A. Calisti, L. Godbert, R. Stamm, and B. Talin, “Fast numerical methods for line shape studies in hot and dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 51, 59–64 (1994).10.1016/0022-4073(94)90065-5
    [46]
    N. C. Woolsey, A. Asfaw, B. Hammel, C. Keane, C. A. Back, A. Calisti, C. Mossé, R. Stamm, B. Talin, J. S. Wark et al., “Spectroscopy of compressed high energy density matter,” Phys. Rev. E 53, 6396 (1996).10.1103/physreve.53.6396
    [47]
    N. C. Woolsey, B. A. Hammel, C. J. Keane, A. Asfaw, C. A. Back, J. C. Moreno, J. K. Nash, A. Calisti, C. Mossé, R. Stamm et al., “Evolution of electron temperature and electron density in indirectly driven spherical implosions,” Phys. Rev. E 56, 2314 (1997).10.1103/physreve.56.2314
    [48]
    B. Talin, A. Calisti, L. Godbert, R. Stamm, R. W. Lee, and L. Klein, “Frequency-fluctuation model for line-shape calculations in plasma spectroscopy,” Phys. Rev. A 51, 1918 (1995).10.1103/physreva.51.1918
    [49]
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (US GPO, 1972), Vol. 55.
    [50]
    B. Talin, E. Dufour, A. Calisti, M. A. Gigosos, M. A. González, T. del Rio Gaztelurrutia, and J. W. Dufty, “Molecular dynamics simulation for modelling plasma spectroscopy,” J. Phys. A: Math. Gen. 36, 6049 (2003).10.1088/0305-4470/36/22/329
    [51]
    C. A. Iglesias, H. E. DeWitt, J. L. Lebowitz, D. MacGowan, and W. B. Hubbard, “Low-frequency electric microfield distributions in plasmas,” Phys. Rev. A 31, 1698 (1985).10.1103/physreva.31.1698
    [52]
    C. A. Iglesias, F. J. Rogers, R. Shepherd, A. Bar-Shalom, M. S. Murillo, D. P. Kilcrease, A. Calisti, and R. W. Lee, “Fast electric microfield distribution calculations in extreme matter conditions,” J. Quant. Spectrosc. Radiat. Transfer 65, 303–315 (2000).10.1016/s0022-4073(99)00076-x
    [53]
    C. F. Hooper, Jr., “Low-frequency component electric microfield distributions in plasmas,” Phys. Rev. 165, 215 (1968).10.1103/physrev.165.215
    [54]
    N. C. Woolsey, B. A. Hammel, C. J. Keane, C. A. Back, J. C. Moreno, J. K. Nash, A. Calisti, C. Mossé, L. Godbert, R. Stamm et al., “Spectroscopic line shape measurements at high densities,” J. Quant. Spectrosc. Radiat. Transfer 58, 975–989 (1997).10.1016/s0022-4073(97)00103-9
    [55]
    S. Ferri, A. Calisti, C. Mossé, J. Rosato, B. Talin, S. Alexiou, M. A. Gigosos, M. González, D. González-Herrero, N. Lara et al., “Ion dynamics effect on Stark-broadened line shapes: A cross-comparison of various models,” Atoms 2, 299–318 (2014).10.3390/atoms2030299
    [56]
    A. Calisti, C. Mossé, S. Ferri, B. Talin, F. Rosmej, L. A. Bureyeva, and V. S. Lisitsa, “Dynamic Stark broadening as the Dicke narrowing effect,” Phys. Rev. E 81, 016406 (2010).10.1103/PhysRevE.81.016406
    [57]
    H. R. Griem, M. Blaha, and P. C. Kepple, “Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas,” Phys. Rev. A 19, 2421 (1979).10.1103/physreva.19.2421
    [58]
    E. Galtier, F. Rosmej, A. Calisti, B. Talin, C. Mossé, S. Ferri, and V. Lisitsa, “Interference effects and Stark broadening in XUV intrashell transitions in aluminum under conditions of intense XUV free-electron-laser irradiation,” Phys. Rev. A 87, 033424 (2013).10.1103/physreva.87.033424
    [59]
    S. Ferri, A. Calisti, R. Stamm, B. Talin, R. W. Lee, and L. Klein, “Electronic broadening model for high-n balmer line profiles,” Phys. Rev. E 58, R6943(R) (1998).10.1103/physreve.58.r6943
    [60]
    [61]
    H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, and C. Yamanaka, “Generation of a strong magnetic field by an intense CO2 laser pulse,” Phys. Rev. Lett. 56, 846 (1986).10.1103/physrevlett.56.846
    [62]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki et al., “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1–7 (2013).10.1038/srep01170
    [63]
    J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani et al., “Laser-driven platform for generation and characterization of strong quasi-static magnetic fields,” New J. Phys. 17, 083051 (2015).10.1088/1367-2630/17/8/083051
    [64]
    S. Glenzer, T. Wrubel, S. Buscher, H.-J. Kunze, L. Godbert, A. Calisti, R. Stamm, B. Talin, J. Nash, R. W. Lee et al., “Spectral line profiles of n = 4 to n = 5 transitions in C IV, N V and O VI,” J. Phys. B: At., Mol. Opt. Phys. 27, 5507 (1994).10.1088/0953-4075/27/22/010
    [65]
    T. Fujimoto and A. Iwamae, Plasma Polarization Spectroscopy (Springer, 2008), Vol. 44.
    [66]
    [67]
    [68]
    J. R. Davies, D. H. Barnak, R. Betti, E. M. Campbell, V. Y. Glebov, E. C. Hansen, J. P. Knauer, J. L. Peebles, and A. B. Sefkow, “Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion,” Phys. Plasmas 26, 022706 (2019).10.1063/1.5082960
    [69]
    C. A. Walsh, K. McGlinchey, J. K. Tong, B. D. Appelbe, A. Crilly, M. F. Zhang, and J. P. Chittenden, “Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions,” Phys. Plasmas 26, 022701 (2019).10.1063/1.5085498
    [70]
    C. A. Walsh, J. P. Chittenden, D. W. Hill, and C. Ridgers, “Extended-magnetohydrodynamics in under-dense plasmas,” Phys. Plasmas 27, 022103 (2020).10.1063/1.5124144
    [71]
    N. C. Woolsey, B. A. Hammel, C. J. Keane, C. A. Back, J. C. Moreno, J. K. Nash, A. Calisti, C. Mossé, R. Stamm, B. Talin et al., “Competing effects of collisional ionization and radiative cooling in inertially confined plasmas,” Phys. Rev. E 57, 4650 (1998).10.1103/physreve.57.4650
    [72]
    H.-K. Chung and R. W. Lee, “Applications of NLTE population kinetics,” High Energy Density Phys. 5, 1–14 (2009).10.1016/j.hedp.2009.02.005
    [73]
    R. Florido, R. Rodríguez, J. M. Gil, J. G. Rubiano, P. Martel, E. Mínguez, and R. C. Mancini, “Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates,” Phys. Rev. E 80, 056402 (2009).10.1103/PhysRevE.80.056402
    [74]
    J. F. Seely, “Gigagauss magnetic field measurements using Zeeman broadening of Ne-like transitions in highly charged ions,” Rev. Sci. Instrum. 92, 053535 (2021).10.1063/5.0040893
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (171) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return