Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Sadler James D., Li Hui, Flippo Kirk A.. Parameter space for magnetization effects in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(6): 065902. doi: 10.1063/5.0057087
Citation: Sadler James D., Li Hui, Flippo Kirk A.. Parameter space for magnetization effects in high-energy-density plasmas[J]. Matter and Radiation at Extremes, 2021, 6(6): 065902. doi: 10.1063/5.0057087

Parameter space for magnetization effects in high-energy-density plasmas

doi: 10.1063/5.0057087
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: james4sadler@lanl.gov
  • Received Date: 2021-05-17
  • Accepted Date: 2021-09-06
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Magnetic fields are well known to affect the evolution of fluids via the J × B force, where J is the current density and B is the magnetic field. This force leads to the influence of magnetic fields on hydrodynamics (magnetohydrodynamics). Magnetic fields are often neglected in modeling of high-energy-density plasmas, since J × B is very small compared with the plasma pressure gradients. However, many experiments lie in a separate part of parameter space where the plasma is indirectly affected via magnetization of the heat flux and charged particle transport. This is true even for initially unmagnetized plasmas, since misaligned density and temperature gradients can self-generate magnetic fields. By comparing terms in the induction equation, we go on to estimate the regions of parameter space where these self-generated fields are strong enough to affect the hydrodynamics.
  • loading
  • [1]
    M. G. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001
    [2]
    H. Alfvén, “Existence of electromagnetic-hydrodynamic waves,” Nature 150, 405 (1942).10.1038/150405d0
    [3]
    G. G. Howes, W. Dorland, S. C. Cowley, G. W. Hammett, E. Quataert, A. A. Schekochihin, and T. Tatsuno, “Kinetic simulations of magnetized turbulence in astrophysical plasmas,” Phys. Rev. Lett. 100, 065004 (2008).10.1103/PhysRevLett.100.065004
    [4]
    A. S. Liao, S. Li, H. Li, K. Flippo, D. Barnak, K. V. Kelso, C. Fiedler Kawaguchi, A. Rasmus, S. Klein, J. Levesque et al., “Design of a new turbulent dynamo experiment on the OMEGA-EP,” Phys. Plasmas 26, 032306 (2019).10.1063/1.5081062
    [5]
    L. Biermann, “Über den ursprung der magnetfelder auf sternen und im interstellaren raum (mit einem anhang von A. Schlüter),” Z. Naturforsch., A 5, 65 (1950).10.1515/zna-1950-0201
    [6]
    S. Braginskii, “Transport phenomena in a completely ionized two-temperature plasma,” Sov. Phys. JETP 6, 358 (1958).
    [7]
    W. A. Farmer, J. M. Koning, D. J. Strozzi, D. E. Hinkel, L. F. Berzak Hopkins, O. S. Jones, and M. D. Rosen, “Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment,” Phys. Plasmas 24, 052703 (2017).10.1063/1.4983140
    [8]
    C. A. Walsh, A. J. Crilly, and J. P. Chittenden, “Magnetized directly-driven ICF capsules: Increased instability growth from non-uniform laser drive,” Nucl. Fusion 60, 106006 (2020).10.1088/1741-4326/abab52
    [9]
    F. García-Rubio, R. Betti, J. Sanz, and H. Aluie, “Magnetic-field generation and its effect on ablative Rayleigh–Taylor instability in diffusive ablation fronts,” Phys. Plasmas 28, 012103 (2021).10.1063/5.0031015
    [10]
    T. H. Kho and M. G. Haines, “Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas,” Phys. Rev. Lett. 55, 825 (1985).10.1103/physrevlett.55.825
    [11]
    E. Tubman, A. Joglekar, A. Bott, M. Borghesi, B. Coleman, G. Cooper, C. Danson, P. Durey, J. Foster, P. Graham et al., “Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles,” Nat. Commun. 12, 334 (2021).10.1038/s41467-020-20387-7
    [12]
    C. A. Walsh, J. P. Chittenden, K. McGlinchey, N. P. L. Niasse, and B. D. Appelbe, “Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility,” Phys. Rev. Lett. 118, 155001 (2017).10.1103/physrevlett.118.155001
    [13]
    B. Appelbe, A. L. Velikovich, M. Sherlock, C. Walsh, A. Crilly, S. O’Neill, and J. Chittenden, “Magnetic field transport in propagating thermonuclear burn,” Phys. Plasmas 28, 032705 (2021).10.1063/5.0040161
    [14]
    Y. Liu, Z. H. Chen, H. H. Zhang, and Z. Y. Lin, “Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer,” Phys. Fluids 30, 044102 (2018).10.1063/1.5004473
    [15]
    L. Willingale, A. G. R. Thomas, P. M. Nilson, M. C. Kaluza, S. Bandyopadhyay, A. E. Dangor, R. G. Evans, P. Fernandes, M. G. Haines, C. Kamperidis et al., “Fast advection of magnetic fields by hot electrons,” Phys. Rev. Lett. 105, 095001 (2010).10.1103/PhysRevLett.105.095001
    [16]
    J. D. Sadler, C. A. Walsh, and H. Li, “Symmetric set of transport coefficients for collisional magnetized plasma,” Phys. Rev. Lett. 126, 075001 (2021).10.1103/PhysRevLett.126.075001
    [17]
    X.-N. Bai, “Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics,” Astrophys. J. 845, 75 (2017).10.3847/1538-4357/aa7dda
    [18]
    D. Grasso and H. R. Rubinstein, “Magnetic fields in the early universe,” Phys. Rep. 348, 163 (2001).10.1016/s0370-1573(00)00110-1
    [19]
    D. Froula, J. Ross, B. Pollock, P. Davis, A. James, L. Divol, M. Edwards, A. Offenberger, D. Price, R. Town et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
    [20]
    P. Tzeferacos, A. Rigby, A. F. A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, E. M. Churazov, J. Emig, F. Fiuza et al., “Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma,” Nat. Commun. 9, 591 (2018).10.1038/s41467-018-02953-2
    [21]
    P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107, 035006 (2011).10.1103/PhysRevLett.107.035006
    [22]
    D. H. Barnak, J. R. Davies, R. Betti, M. J. Bonino, E. M. Campbell, V. Y. Glebov, D. R. Harding, J. P. Knauer, S. P. Regan, A. B. Sefkow et al., “Laser-driven magnetized liner inertial fusion on OMEGA,” Phys. Plasmas 24, 056310 (2017).10.1063/1.4982692
    [23]
    P. T. Campbell, C. A. Walsh, B. K. Russell, J. P. Chittenden, A. Crilly, G. Fiksel, P. M. Nilson, A. G. R. Thomas, K. Krushelnick, and L. Willingale, “Magnetic signatures of radiation-driven double ablation fronts,” Phys. Rev. Lett. 125, 145001 (2020).10.1103/physrevlett.125.145001
    [24]
    D. W. Hill and R. J. Kingham, “Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions,” Phys. Rev. E 98, 021201 (2018).10.1103/PhysRevE.98.021201
    [25]
    E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029 (1986).10.1063/1.865901
    [26]
    C. A. Walsh, J. P. Chittenden, D. W. Hill, and C. Ridgers, “Extended-magnetohydrodynamics in under-dense plasmas,” Phys. Plasmas 27, 022103 (2020).10.1063/1.5124144
    [27]
    J. R. Davies, H. Wen, J.-Y. Ji, and E. D. Held, “Transport coefficients for magnetic-field evolution in inviscid magnetohydrodynamics,” Phys. Plasmas 28, 012305 (2021).10.1063/5.0023445
    [28]
    G. P. Schurtz, P. D. Nicolaï, and M. Busquet, “A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,” Phys. Plasmas 7, 4238–4249 (2000).10.1063/1.1289512
    [29]
    D. Del Sorbo, J.-L. Feugeas, P. Nicolaï, M. Olazabal-Loumé, B. Dubroca, S. Guisset, M. Touati, and V. Tikhonchuk, “Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas,” Phys. Plasmas 22, 082706 (2015).10.1063/1.4926824
    [30]
    M. Sherlock, J. P. Brodrick, and C. P. Ridgers, “A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion,” Phys. Plasmas 24, 082706 (2017).10.1063/1.4986095
    [31]
    K. Schoeffler and L. Silva, “Effects of collisions on the generation and suppression of temperature anisotropies and the Weibel instability,” Phys. Rev. Res. 2, 033233 (2020).10.1103/physrevresearch.2.033233
    [32]
    J. D. Sadler, H. Li, and K. A. Flippo, “Magnetic field generation from composition gradients in inertial confinement fusion fuel,” Philos. Trans. R. Soc., A 378, 20200045 (2020).10.1098/rsta.2020.0045
    [33]
    M. G. Haines, “Heat flux effects in Ohm’s law,” Plasma Phys. Controlled Fusion 28, 1705 (1986).10.1088/0741-3335/28/11/007
    [34]
    Y. Zhou, W. Matthaeus, and P. Dmitruk, “Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas,” Rev. Mod. Phys. 76, 1015 (2004).10.1103/revmodphys.76.1015
    [35]
    J. P. Sauppe, S. Palaniyappan, E. N. Loomis, J. L. Kline, K. A. Flippo, and B. Srinivasan, “Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry,” Matter Radiat. Extremes 4, 065403 (2019).10.1063/1.5090999
    [36]
    J. P. Sauppe, S. Palaniyappan, B. J. Tobias, J. L. Kline, K. A. Flippo, O. L. Landen, D. Shvarts, S. H. Batha, P. A. Bradley, E. N. Loomis et al., “Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments,” Phys. Rev. Lett. 124, 185003 (2020).10.1103/physrevlett.124.185003
    [37]
    M. J.-E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, S. R. Klein, F. Kroll, F.-E. Brack, T. Michel, P. Mabey, S. Pikuz et al., “On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas,” Matter Radiat. Extremes 6, 026904 (2021).10.1063/5.0025374
    [38]
    M. G. Haines, “Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation,” Phys. Rev. Lett. 78, 254 (1997).10.1103/physrevlett.78.254
    [39]
    Y. Lu, S. Li, H. Li, K. A. Flippo, D. Barnak, A. Birkel, B. Lahmann, C. Li, A. M. Rasmus, K. Kelso et al., “Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets,” Phys. Plasmas 27, 012303 (2020).10.1063/1.5126149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (200) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return