Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yao W., Fazzini A., Chen S. N., Burdonov K., Antici P., Béard J., Bolaños S., Ciardi A., Diab R., Filippov E. D., Kisyov S., Lelasseux V., Miceli M., Moreno Q., Nastasa V., Orlando S., Pikuz S., Popescu D. C., Revet G., Ribeyre X., d’Humières E., Fuchs J.. Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization[J]. Matter and Radiation at Extremes, 2022, 7(1): 014402. doi: 10.1063/5.0055071
Citation: Yao W., Fazzini A., Chen S. N., Burdonov K., Antici P., Béard J., Bolaños S., Ciardi A., Diab R., Filippov E. D., Kisyov S., Lelasseux V., Miceli M., Moreno Q., Nastasa V., Orlando S., Pikuz S., Popescu D. C., Revet G., Ribeyre X., d’Humières E., Fuchs J.. Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization[J]. Matter and Radiation at Extremes, 2022, 7(1): 014402. doi: 10.1063/5.0055071

Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization

doi: 10.1063/5.0055071
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yao.weipeng@polytechnique.edu
  • Received Date: 2021-04-25
  • Accepted Date: 2021-09-26
  • Available Online: 2022-01-01
  • Publish Date: 2022-01-01
  • Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation. In the absence of particle collisions in the system, theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure (as in our case) is able to induce energy dissipation and allow shock formation. Shock formation can alternatively take place when two plasmas interact, through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation. Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers (JLF/Titan at LLNL and LULI2000) with high-strength magnetic fields, we have investigated the generation of a magnetized collisionless shock and the associated particle energization. We have characterized the shock as being collisionless and supercritical. We report here on measurements of the plasma density and temperature, the electromagnetic field structures, and the particle energization in the experiments, under various conditions of ambient plasma and magnetic field. We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations. As a companion paper to Yao et al. [Nat. Phys. 17 , 1177–1182 (2021)], here we show additional results of the experiments and simulations, providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration.
  • loading
  • [1]
    E. A. Helder, J. Vink, C. G. Bassa, A. Bamba, J. A. M. Bleeker, S. Funk, P. Ghavamian, K. J. van der Heyden, F. Verbunt, and R. Yamazaki, “Measuring the cosmic-ray acceleration efficiency of a supernova remnant,” Science 325, 719 (2009).10.1126/science.1173383
    [2]
    S. Nikolić, G. van de Ven, K. Heng, D. Kupko, B. Husemann, J. C. Raymond, J. P. Hughes, and J. Falcón-Barroso, “An integral view of fast shocks around supernova 1006,” Science 340, 45–48 (2013).10.1126/science.1228297
    [3]
    D. L. Turner, L. B. Wilson III, T. Z. Liu, I. J. Cohen, S. J. Schwartz, A. Osmane, J. F. Fennell, J. H. Clemmons, J. B. Blake, J. Westlake, B. H. Mauk, A. N. Jaynes, T. Leonard, D. N. Baker, R. J. Strangeway, C. T. Russell, D. J. Gershman, L. Avanov, B. L. Giles, R. B. Torbert, J. Broll, R. G. Gomez, S. A. Fuselier, and J. L. Burch, “Autogenous and efficient acceleration of energetic ions upstream of Earth’s bow shock,” Nature 561, 206–210 (2018).10.1038/s41586-018-0472-9
    [4]
    T. Amano, T. Katou, N. Kitamura, M. Oka, Y. Matsumoto, M. Hoshino, Y. Saito, S. Yokota, B. L. Giles, W. R. Paterson et al., “Observational evidence for stochastic shock drift acceleration of electrons at the Earth’s bow shock,” Phys. Rev. Lett. 124, 065101 (2020).10.1103/PhysRevLett.124.065101
    [5]
    R. B. Decker, S. M. Krimigis, E. C. Roelof, M. E. Hill, T. P. Armstrong, G. Gloeckler, D. C. Hamilton, and L. J. Lanzerotti, “Mediation of the solar wind termination shock by non-thermal ions,” Nature 454, 67–70 (2008).10.1038/nature07030
    [6]
    F. V. Coroniti, “Dissipation discontinuities in hydromagnetic shock waves,” J. Plasma Phys. 4, 265–282 (1970).10.1017/s0022377800004992
    [7]
    J. P. Edmiston and C. F. Kennel, “A parametric survey of the first critical Mach number for a fast MHD shock,” J. Plasma Phys. 32, 429–441 (1984).10.1017/s002237780000218x
    [8]
    A. Balogh and R. A. Treumann, Physics of Collisionless Shocks: Space Plasma Shock Waves (Springer, New York, 2013).
    [9]
    G. P. Zank, H. L. Pauls, I. H. Cairns, and G. M. Webb, “Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks,” J. Geophys. Res.: Space Phys. 101, 457–477, https://doi.org/10.1029/95ja02860 (1996).10.1029/95ja02860
    [10]
    B. Lembège, J. Giacalone, M. Scholer, T. Hada, M. Hoshino, V. Krasnoselskikh, H. Kucharek, P. Savoini, and T. Terasawa, “Selected problems in collisionless-shock physics,” Space Sci. Rev. 110, 161–226 (2004).10.1023/b:spac.0000023372.12232.b7
    [11]
    R. H. Burrows, G. P. Zank, G. M. Webb, L. F. Burlaga, and N. F. Ness, “Pickup ion dynamics at the heliospheric termination shock observed by voyager 2,” Astrophys. J. 715, 1109 (2010).10.1088/0004-637x/715/2/1109
    [12]
    G. P. Zank, J. Heerikhuisen, N. V. Pogorelov, R. Burrows, and D. McComas, “Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations,” Astrophys. J. 708, 1092 (2009).10.1088/0004-637x/708/2/1092
    [13]
    S. V. Chalov, Y. G. Malama, D. B. Alexashov, and V. V. Izmodenov, “Acceleration of interstellar pickup protons at the heliospheric termination shock: Voyager 1/2 energetic proton fluxes in the inner heliosheath,” Mon. Not. R. Astron. Soc. 455, 431–437 (2016).10.1093/mnras/stv2323
    [14]
    F. Guo and J. Giacalone, “The acceleration of thermal protons at parallel collisionless shocks: Three-dimensional hybrid simulations,” Astrophys. J. 773, 158 (2013).10.1088/0004-637x/773/2/158
    [15]
    Z. Yang, Q. Lu, B. Lembège, and S. Wang, “Shock front nonstationarity and ion acceleration in supercritical perpendicular shocks,” J. Geophys. Res.: Space Phys. 114, A03111, https://doi.org/10.1029/2008ja013785 (2009).10.1029/2008ja013785
    [16]
    Z. Yang, B. Lembège, and Q. Lu, “Impact of the rippling of a perpendicular shock front on ion dynamics,” J. Geophys. Res.: Space Phys. 117, A07222, https://doi.org/10.1029/2011ja017211 (2012).10.1029/2011ja017211
    [17]
    R. Paul Drake, High Energy Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics (Springer-Verlag, Berlin, Heidelberg, 2006).
    [18]
    S. Lebedev, A. Frank, and D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002
    [19]
    W. Fox, G. Fiksel, A. Bhattacharjee, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Filamentation instability of counterstreaming laser-driven plasmas,” Phys. Rev. Lett. 111, 225002 (2013).10.1103/physrevlett.111.225002
    [20]
    C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy et al., “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015).10.1038/nphys3178
    [21]
    H.-S. Park, C. M. Huntington, F. Fiuza, R. P. Drake, D. H. Froula, G. Gregori, M. Koenig, N. L. Kugland, C. C. Kuranz, D. Q. Lamb et al., “Collisionless shock experiments with lasers and observation of Weibel instabilities,” Phys. Plasmas 22, 056311 (2015).10.1063/1.4920959
    [22]
    H.-S. Park, J. S. Ross, C. M. Huntington, F. Fiuza, D. Ryutov, D. Casey, R. P. Drake, G. Fiksel, D. Froula, G. Gregori, N. L. Kugland, C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. Remington, Y. Sakawa, A. Spitkovsky, H. Takabe, and A. B. Zylstra, “Laboratory astrophysical collisionless shock experiments on omega and NIF,” J. Phys.: Conf. Ser. 688, 012084 (2016).10.1088/1742-6596/688/1/012084
    [23]
    J. S. Ross, D. P. Higginson, D. Ryutov, F. Fiuza, R. Hatarik, C. M. Huntington, D. H. Kalantar, A. Link, B. B. Pollock, B. A. Remington et al., “Transition from collisional to collisionless regimes in interpenetrating plasma flows on the National Ignition Facility,” Phys. Rev. Lett. 118, 185003 (2017).10.1103/physrevlett.118.185003
    [24]
    C. Courtois, R. A. D. Grundy, A. D. Ash, D. M. Chambers, N. C. Woolsey, R. O. Dendy, and K. G. McClements, “Experiment on collisionless plasma interaction with applications to supernova remnant physics,” Phys. Plasmas 11, 3386–3393 (2004).10.1063/1.1752930
    [25]
    D. Yuan, H. Wei, G. Liang, F. Wang, Y. Li, Z. Zhang et al., “Laboratory study of astrophysical collisionless shock at SG-II laser facility,” High Power Laser Sci. Eng. 6, E45 (2018).10.1017/hpl.2018.40
    [26]
    Y. Kuramitsu, Y. Sakawa, T. Morita, C. D. Gregory, J. N. Waugh, S. Dono, H. Aoki, H. Tanji, M. Koenig, N. Woolsey et al., “Time evolution of collisionless shock in counterstreaming laser-produced plasmas,” Phys. Rev. Lett. 106, 175002 (2011).10.1103/physrevlett.106.175002
    [27]
    C. K. Li, V. T. Tikhonchuk, Q. Moreno, H. Sio, E. D’Humières, X. Ribeyre, P. Korneev, S. Atzeni, R. Betti, A. Birkel et al., “Collisionless shocks driven by supersonic plasma flows with self-generated magnetic fields,” Phys. Rev. Lett. 123, 055002 (2019).10.1103/PhysRevLett.123.055002
    [28]
    G. F. Swadling, C. Bruulsema, F. Fiuza, D. P. Higginson, C. M. Huntington, H.-S. Park, B. B. Pollock, W. Rozmus, H. G. Rinderknecht, J. Katz et al., “Measurement of kinetic-scale current filamentation dynamics and associated magnetic fields in interpenetrating plasmas,” Phys. Rev. Lett. 124, 215001 (2020).10.1103/physrevlett.124.215001
    [29]
    F. Fiuza, G. F. Swadling, A. Grassi, H. G. Rinderknecht, D. P. Higginson, D. D. Ryutov, C. Bruulsema, R. P. Drake, S. Funk, S. Glenzer et al., “Electron acceleration in laboratory-produced turbulent collisionless shocks,” Nat. Phys. 16, 916–920 (2020).10.1038/s41567-020-0919-4
    [30]
    D. B. Schaeffer, E. T. Everson, D. Winske, C. G. Constantin, A. S. Bondarenko, L. A. Morton, K. A. Flippo, D. S. Montgomery, S. A. Gaillard, and C. Niemann, “Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston,” Phys. Plasmas 19, 070702 (2012).10.1063/1.4736846
    [31]
    C. Niemann, W. Gekelman, C. G. Constantin, E. T. Everson, D. B. Schaeffer, A. S. Bondarenko, S. E. Clark, D. Winske, S. Vincena, B. Van Compernolle et al., “Observation of collisionless shocks in a large current-free laboratory plasma,” Geophys. Res. Lett. 41, 7413–7418 (2014).10.1002/2014gl061820
    [32]
    D. B. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. H. Barnak, S. X. Hu, and K. Germaschewski, “Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory,” Phys. Rev. Lett. 119, 025001 (2017).10.1103/PhysRevLett.119.025001
    [33]
    D. B. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. H. Barnak, S. X. Hu, K. Germaschewski, and R. K. Follett, “High-Mach number, laser-driven magnetized collisionless shocks,” Phys. Plasmas 24, 122702 (2017).10.1063/1.4989562
    [34]
    D. B. Schaeffer, W. Fox, R. K. Follett, G. Fiksel, C. K. Li, J. Matteucci, A. Bhattacharjee, and K. Germaschewski, “Direct observations of particle dynamics in magnetized collisionless shock precursors in laser-produced plasmas,” Phys. Rev. Lett. 122, 245001 (2019).10.1103/physrevlett.122.245001
    [35]
    L. Romagnani, S. V. Bulanov, M. Borghesi, P. Audebert, J. C. Gauthier, K. Löwenbrück, A. J. Mackinnon, P. Patel, G. Pretzler, T. Toncian et al., “Observation of collisionless shocks in laser-plasma experiments,” Phys. Rev. Lett. 101, 025004 (2008).10.1103/PhysRevLett.101.025004
    [36]
    A. Rigby, F. Cruz, B. Albertazzi, R. Bamford, A. R. Bell, J. E. Cross, F. Fraschetti, P. Graham, Y. Hara, P. M. Kozlowski et al., “Electron acceleration by wave turbulence in a magnetized plasma,” Nat. Phys. 14, 475–479 (2018).10.1038/s41567-018-0059-2
    [37]
    H. Ahmed, M. E. Dieckmann, L. Romagnani, D. Doria, G. Sarri, M. Cerchez, E. Ianni, I. Kourakis, A. L. Giesecke, M. Notley et al., “Time-resolved characterization of the formation of a collisionless shock,” Phys. Rev. Lett. 110, 205001 (2013).10.1103/physrevlett.110.205001
    [38]
    J. L. Jiao, S. K. He, H. B. Zhuo, B. Qiao, M. Y. Yu, B. Zhang, Z. G. Deng, F. Lu, K. N. Zhou, X. D. Wang et al., “Experimental observation of ion–ion acoustic instability associated with collisionless shocks in laser-produced plasmas,” Astrophys. J. Lett. 883, L37 (2019).10.3847/2041-8213/ab4190
    [39]
    W. Yao, A. Fazzini, S. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños, A. Ciardi, R. Diab, E. Filippov et al., “Laboratory evidence for proton energization by collisionless shock surfing,” Nat. Phys. 17, 1177–1182 (2021).10.1038/s41567-021-01325-w
    [40]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. Burris-Mog, S. N. Chen, D. Da Silva, S. Dittrich et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
    [41]
    W. Yao, B. Qiao, Z. Zhao, Z. Lei, H. Zhang, C. Zhou, S. Zhu, and X. He, “Kinetic particle-in-cell simulations of the transport of astrophysical relativistic jets in magnetized intergalactic medium,” Astrophys. J. 876, 2 (2019).10.3847/1538-4357/ab13a0
    [42]
    D. B. Schaeffer, W. Fox, J. Matteucci, K. V. Lezhnin, A. Bhattacharjee, and K. Germaschewski, “Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas,” Phys. Plasmas 27, 042901 (2020).10.1063/1.5123229
    [43]
    D. Higginson, P. Korneev, C. Ruyer, R. Riquier, Q. Moreno, J. Béard, S. Chen, A. Grassi, M. Grech, L. Gremillet et al., “Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows,” Commun. Phys. 2, 60 (2019).10.1038/s42005-019-0160-6
    [44]
    D. P. Higginson, G. Revet, B. Khiar, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani et al., “Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle,” High Energy Density Phys. 23, 48–59 (2017).10.1016/j.hedp.2017.02.003
    [45]
    B. Khiar, G. Revet, A. Ciardi, K. Burdonov, E. Filippov, J. Béard, M. Cerchez, S. N. Chen, T. Gangolf, S. S. Makarov et al., “Laser-produced magnetic-Rayleigh–Taylor unstable plasma slabs in a 20 T magnetic field,” Phys. Rev. Lett. 123, 205001 (2019).10.1103/physrevlett.123.205001
    [46]
    [47]
    S. Giagkiozis, S. N. Walker, S. A. Pope, and G. Collinson, “Validation of single spacecraft methods for collisionless shock velocity estimation,” J. Geophys. Res.: Space Phys. 122, 8632–8641, https://doi.org/10.1002/2017ja024502 (2017).10.1002/2017ja024502
    [48]
    A. Y. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin et al., “High-performance X-ray spectroscopic devices for plasma microsources investigations,” Phys. Scr. 50, 333–338 (1994).10.1088/0031-8949/50/4/003
    [49]
    S. N. Ryazantsev, I. Y. Skobelev, A. Y. Faenov, T. A. Pikuz, A. N. Grum-Grzhimailo, and S. A. Pikuz, “X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies,” JETP Lett. 102, 707–712 (2015).10.1134/s0021364015230149
    [50]
    E. D. Filippov, I. Y. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, and J. Fuchs, “X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars,” Matter Radiat. Extremes 4, 064402 (2019).10.1063/1.5124350
    [51]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [52]
    [53]
    D. H. Froula, N. C. Luhmann, Jr., J. Sheffield, and S. H. Glenzer, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier, 2011).
    [54]
    D. Froula, J. Ross, B. Pollock, P. Davis, A. James, L. Divol, M. Edwards, A. Offenberger, D. Price, R. Town et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
    [55]
    A. Mančić, J. Fuchs, P. Antici, S. Gaillard, and P. Audebert, “Absolute calibration of photostimulable image plate detectors used as (0.5–20 MeV) high-energy proton detectors,” Rev. Sci. Instrum. 79, 073301 (2008).10.1063/1.2949388
    [56]
    B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J., Suppl. Ser. 131, 273 (2000).10.1086/317361
    [57]
    A. J. Kemp and J. Meyer-ter-Vehn, “An equation of state code for hot dense matter, based on the QEOS description,” Nucl. Instrum. Methods Phys. Res., Sect. A 415, 674–676 (1998).10.1016/s0168-9002(98)00446-x
    [58]
    M. G. Haines, “Magnetic-field generation in laser fusion and hot-electron transport,” Can. J. Phys. 64, 912–919 (1986).10.1139/p86-160
    [59]
    C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, P. A. Amendt, S. P. Hatchett, O. L. Landen, A. J. Mackinnon, P. K. Patel, V. A. Smalyuk, T. C. Sangster, and J. P. Knauer, “Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography,” Phys. Rev. Lett. 97, 135003 (2006).10.1103/physrevlett.97.135003
    [60]
    L. Gao, P. M. Nilson, I. V. Igumenshchev, M. G. Haines, D. H. Froula, R. Betti, and D. D. Meyerhofer, “Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas,” Phys. Rev. Lett. 114, 215003 (2015).10.1103/physrevlett.114.215003
    [61]
    C. A. Cecchetti, M. Borghesi, J. Fuchs, G. Schurtz, S. Kar, A. Macchi, L. Romagnani, P. A. Wilson, P. Antici, R. Jung, J. Osterholtz, C. A. Pipahl, O. Willi, A. Schiavi, M. Notley, and D. Neely, “Magnetic field measurements in laser-produced plasmas via proton deflectometry,” Phys. Plasmas 16, 043102 (2009).10.1063/1.3097899
    [62]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [63]
    S. Matsukiyo, and M. Scholer, “Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks,” J. Geophys. Res.: Space Phys. 108, 1459, https://doi.org/10.1029/2003ja010080 (2003).10.1029/2003ja010080
    [64]
    L. Woods, in Shock Waves in Collisionless Plasmas, edited by D. Tidman and N. Krall (Wiley, New York, 1971).
    [65]
    D. Burgess and M. Scholer, “Shock front instability associated with reflected ions at the perpendicular shock,” Phys. Plasmas 14, 012108 (2007).10.1063/1.2435317
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (79) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return