Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Ma H. H., Li X. F., Weng S. M., Yew S. H., Kawata S., Gibbon P., Sheng Z. M., Zhang J.. Mitigating parametric instabilities in plasmas by sunlight-like lasers[J]. Matter and Radiation at Extremes, 2021, 6(5): 055902. doi: 10.1063/5.0054653
Citation: Ma H. H., Li X. F., Weng S. M., Yew S. H., Kawata S., Gibbon P., Sheng Z. M., Zhang J.. Mitigating parametric instabilities in plasmas by sunlight-like lasers[J]. Matter and Radiation at Extremes, 2021, 6(5): 055902. doi: 10.1063/5.0054653

Mitigating parametric instabilities in plasmas by sunlight-like lasers

doi: 10.1063/5.0054653
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: xiaofengli@sjtu.edu.cn; wengsuming@sjtu.edu.cn; and z.sheng@strath.ac.uk; a)Authors to whom correspondence should be addressed: xiaofengli@sjtu.edu.cn; wengsuming@sjtu.edu.cn; and z.sheng@strath.ac.uk; a)Authors to whom correspondence should be addressed: xiaofengli@sjtu.edu.cn; wengsuming@sjtu.edu.cn; and z.sheng@strath.ac.uk
  • Received Date: 2021-04-20
  • Accepted Date: 2021-08-13
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • Sunlight-like lasers that have a continuous broad frequency spectrum, random phase spectrum, and random polarization are formulated theoretically. With a sunlight-like laser beam consisting of a sequence of temporal speckles, the resonant three-wave coupling that underlies parametric instabilities in laser–plasma interactions can be greatly degraded owing to the limited duration of each speckle and the frequency shift between two adjacent speckles. The wave coupling can be further weakened by the random polarization of such beams. Numerical simulations demonstrate that the intensity threshold of stimulated Raman scattering in homogeneous plasmas can be doubled by using a sunlight-like laser beam with a relative bandwidth of ∼1% as compared with a monochromatic laser beam. Consequently, the hot-electron generation harmful to inertial confinement fusion can be effectively controlled by using sunlight-like laser drivers. Such drivers may be realized in the next generation of broadband lasers by combining two or more broadband beams with independent phase spectra or by applying polarization smoothing to a single broadband beam.
  • loading
  • [1]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing, 1988).
    [2]
    C. S. Liu, High-Power Laser-Plasma Interaction (Cambridge University Press, 2019).
    [3]
    T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495 (1997).10.1016/s0030-4018(96)00325-2
    [4]
    C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276 (2007).10.1364/ao.46.003276
    [5]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [6]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
    [7]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [8]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736
    [9]
    J. C. Fernández, J. A. Cobble, B. H. Failor, D. F. DuBois, D. S. Montgomery, H. A. Rose, H. X. Vu, B. H. Wilde, M. D. Wilke, and R. E. Chrien, “Observed dependence of stimulated Raman scattering on ion-acoustic damping in hohlraum plasmas,” Phys. Rev. Lett. 77, 2702 (1996).10.1103/physrevlett.77.2702
    [10]
    P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger, O. S. Jones, L. Berzak Hopkins, R. L. Berger, W. L. Kruer, and J. D. Moody, “Multibeam stimulated Raman scattering in inertial confinement fusion conditions,” Phys. Rev. Lett. 115, 055003 (2015).10.1103/PhysRevLett.115.055003
    [11]
    P. Neumayer, R. L. Berger, L. Divol, D. H. Froula, R. A. London, B. J. MacGowan, N. B. Meezan, J. S. Ross, C. Sorce, L. J. Suter, and S. H. Glenzer, “Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas,” Phys. Rev. Lett. 100, 105001 (2008).10.1103/physrevlett.100.105001
    [12]
    W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer between crossing laser beams,” Phys. Plasmas 3, 382 (1996).10.1063/1.871863
    [13]
    J. D. Moody, P. Michel, L. Divol, R. L. Berger, E. Bond, D. K. Bradley, D. A. Callahan, E. L. Dewald, S. Dixit, M. J. Edwards, S. Glenn, A. Hamza, C. Haynam, D. E. Hinkel, N. Izumi, O. Jones, J. D. Kilkenny, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, O. L. Landen, S. LePape, J. D. Lindl, B. J. MacGowan, N. B. Meezan, A. Nikroo, M. D. Rosen, M. B. Schneider, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, K. Widmann, E. A. Williams, L. J. Atherton, S. H. Glenzer, and E. I. Moses, “Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma,” Nat. Phys. 8, 344 (2012).10.1038/nphys2239
    [14]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/PhysRevLett.120.055001
    [15]
    D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, C. A. Thomas, J. E. Ralph, J. D. Moody, and M. B. Schneider, “Interplay of laser-plasma interactions and inertial fusion hydrodynamics,” Phys. Rev. Lett. 118, 025002 (2017).10.1103/PhysRevLett.118.025002
    [16]
    S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456 (1989).10.1063/1.344101
    [17]
    S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715–1717 (1996).10.1364/ol.21.001715
    [18]
    D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639 (2004).10.1364/ao.43.006639
    [19]
    J. Fuchs, C. Labaune, S. Depierreux, H. A. Baldis, and A. Michard, “Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing,” Phys. Rev. Lett. 84, 3089 (2000).10.1103/physrevlett.84.3089
    [20]
    Ph. Mounaix, L. Divol, S. Hüller, and V. T. Tikhonchuk, “Effects of spatial and temporal smoothing on stimulated Brillouin scattering in the independent-hot-spot model limit,” Phys. Rev. Lett 85, 4526 (2000).10.1103/physrevlett.85.4526
    [21]
    J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, and P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810 (2001).10.1103/physrevlett.86.2810
    [22]
    D. H. Froula, L. Divol, R. L. Berger, R. A. London, N. B. Meezan, D. J. Strozzi, P. Neumayer, J. S. Ross, S. Stagnitto, L. J. Suter, and S. H. Glenzer, “Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas,” Phys. Rev. Lett. 101, 115002 (2008).10.1103/physrevlett.101.115002
    [23]
    B. J. Winjum, F. S. Tsung, and W. B. Mori, “Mitigation of stimulated Raman scattering in the kinetic regime by external magnetic fields,” Phys. Rev. E 98, 043208 (2018).10.1103/physreve.98.043208
    [24]
    B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/PhysRevLett.113.045002
    [25]
    I. Barth and N. J. Fisch, “Reducing parametric backscattering by polarization rotation,” Phys. Plasmas 23, 102106 (2016).10.1063/1.4964291
    [26]
    W. L. Kruer, K. G. Estabook, and K. H. Sinz, “Instability generated laser reflection in plasmas,” Nucl. Fusion 13, 952 (1973).10.1088/0029-5515/13/6/024
    [27]
    J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
    [28]
    S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36, 1309 (1976).10.1103/physrevlett.36.1309
    [29]
    J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618 (2017).10.1364/ao.56.008618
    [30]
    Y. Cui, Y. Gao, D. Rao, D. Liu, F. Li, L. Ji, H. Shi, J. Liu, X. Zhao, W. Feng, L. Xia, J. Liu, X. Li, T. Wang, W. Ma, and Z. Sui, “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opt. Lett. 44, 2859 (2019).10.1364/ol.44.002859
    [31]
    C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28, 451–471 (2020).10.1364/oe.28.000451
    [32]
    J. E. Santos, L. O. Silva, and R. Bingham, “White light parametric instabilities in plasmas,” Phys. Rev. Lett. 98, 235001 (2007).10.1103/physrevlett.98.235001
    [33]
    Y. Zhao, S. M. Weng, M. Chen, J. Zheng, H. B. Zhuo, C. Ren, Z. M. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
    [34]
    R. K. Follett, J. G. Shaw, J. F. Myatt, J. P. Palastro, R. W. Short, and D. H. Froula, “Suppressing two-plasmon decay with laser frequency detuning,” Phys. Rev. Lett. 120, 135005 (2018).10.1103/physrevlett.120.135005
    [35]
    J. A. Marozas, M. Hohenberger, M. J. Rosenberg, D. Turnbull, T. J. B. Collins, P. B. Radha, P. W. McKenty, J. D. Zuegel, F. J. Marshall, S. P. Regan, T. C. Sangster, W. Seka, E. M. Campbell, V. N. Goncharov, M. W. Bowers, J.-M. G. Di Nicola, G. Erbert, B. J. MacGowan, L. J. Pelz, and S. T. Yang, “First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility,” Phys. Rev. Lett. 120, 085001 (2018).10.1103/PhysRevLett.120.085001
    [36]
    J. W. Bates, J. F. Myatt, J. G. Shaw, R. K. Follett, J. L. Weaver, R. H. Lehmberg, and S. P. Obenschain, “Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E 97, 061202 (2018).10.1103/PhysRevE.97.061202
    [37]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [38]
    J. Tinbergen, Astronomical Polarimetry (Cambridge University Press, 1996).
    [39]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [40]
    D. S. Montgomery, J. A. Cobble, J. C. Fernández, R. J. Focia, R. P. Johnson, N. Renard-LeGalloudec, H. A. Rose, and D. A. Russell, “Recent trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade,” Phys. Plasmas 9, 2311 (2002).10.1063/1.1468857
    [41]
    L. Yin, W. Daughton, B. J. Albright, B. Bezzerides, D. F. DuBois, J. M. Kindel, and H. X. Vu, “Nonlinear development of stimulated Raman scattering from electrostatic modes excited by self-consistent non-Maxwellian velocity distributions,” Phys. Rev. E 73, 025401 (2006).10.1103/PhysRevE.73.025401
    [42]
    Y. Zhao, L.-L. Yu, J. Zheng, S.-M. Weng, C. Ren, C.-S. Liu, and Z.-M. Sheng, “Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma,” Phys. Plasmas 22, 052119 (2015).10.1063/1.4921659
    [43]
    K. Q. Pan, S. E. Jiang, Q. Wang, L. Guo, S. W. Li, Z. C. Li, D. Yang, C. Y. Zheng, B. H. Zhang, and X. T. He, “Two-plasmon decay instability of the backscattered light of stimulated Raman scattering,” Nucl. Fusion 58, 096035 (2018).10.1088/1741-4326/aad059
    [44]
    H. Wen, A. V. Maximov, R. Yan, J. Li, C. Ren, and F. S. Tsung, “Three-dimensional particle-in-cell modeling of parametric instabilities near the quarter-critical density in plasmas,” Phys. Rev. E 100, 041201 (2019).10.1103/PhysRevE.100.041201
    [45]
    P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas,” Phys. Fluids B 3, 2882 (1991).10.1063/1.859921
    [46]
    P. N. Guzdar, C. S. Liu, and R. H. Lehmberg, “Induced spatial incoherence effects on the convective Raman instability,” Phys. Fluids B 5, 910 (1993).10.1063/1.860941
    [47]
    H. Wen, R. K. Follett, A. V. Maximov, D. H. Froula, F. S. Tsung, and J. P. Palastro, “Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser,” Phys. Plasmas 28, 042109 (2021).10.1063/5.0036768
    [48]
    T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444 (1999).10.1063/1.369702
    [49]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmondecay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (230) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return