Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Arran C., Ridgers C. P., Woolsey N. C.. Proton radiography in background magnetic fields[J]. Matter and Radiation at Extremes, 2021, 6(4): 046904. doi: 10.1063/5.0054172
Citation: Arran C., Ridgers C. P., Woolsey N. C.. Proton radiography in background magnetic fields[J]. Matter and Radiation at Extremes, 2021, 6(4): 046904. doi: 10.1063/5.0054172

Proton radiography in background magnetic fields

doi: 10.1063/5.0054172
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: christopher.arran@york.ac.uk
  • Received Date: 2021-04-15
  • Accepted Date: 2021-06-18
  • Available Online: 2021-07-01
  • Publish Date: 2021-07-15
  • Proton radiography has proved increasingly successful as a diagnostic for electric and magnetic fields in high-energy-density physics experiments. Most experiments use target-normal sheath acceleration sources with a wide energy range in the proton beam, since the velocity spread can help differentiate between electric and magnetic fields and provide time histories in a single shot. However, in magnetized plasma experiments with strong background fields, the broadband proton spectrum leads to velocity-spread-dependent displacement of the beam and significant blurring of the radiograph. We describe the origins of this blurring and show how it can be removed from experimental measurements, and we outline the conditions under which such deconvolutions are successful. As an example, we apply this method to a magnetized plasma experiment that used a background magnetic field of 3 T and in which the strong displacement and energy spread of the proton beam reduced the spatial resolution from tens of micrometers to a few millimeters. Application of the deconvolution procedure accurately recovers radiographs with resolutions better than 100 µm, enabling the recovery of more accurate estimates of the path-integrated magnetic field. This work extends accurate proton radiography to a class of experiments with significant background magnetic fields, particularly those experiments with an applied external magnetic field.
  • loading
  • [1]
    M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, and M. Roth, “Fast ion generation by high-intensity laser irradiation of solid targets and applications,” Fusion Sci. Technol. 49, 412–439 (2006).10.13182/fst06-a1159
    [2]
    N. L. Kugland, D. D. Ryutov, C. Plechaty, J. S. Ross, and H.-S. Park, “Invited article: Relation between electric and magnetic field structures and their proton-beam images,” Rev. Sci. Instrum. 83, 101301 (2012).10.1063/1.4750234
    [3]
    M. F. Kasim, A. F. A. Bott, P. Tzeferacos, D. Q. Lamb, G. Gregori, and S. M. Vinko, “Retrieving fields from proton radiography without source profiles,” Phys. Rev. E 100, 033208 (2019).10.1103/PhysRevE.100.033208
    [4]
    L. Willingale, A. G. R. Thomas, P. M. Nilson, M. C. Kaluza, S. Bandyopadhyay, A. E. Dangor, R. G. Evans, P. Fernandes, M. G. Haines, C. Kamperidis, R. J. Kingham, S. Minardi, M. Notley, C. P. Ridgers, W. Rozmus, M. Sherlock, M. Tatarakis, M. S. Wei, Z. Najmudin, and K. Krushelnick, “Fast advection of magnetic fields by hot electrons,” Phys. Rev. Lett. 105, 095001 (2010).10.1103/PhysRevLett.105.095001
    [5]
    C. K. Li, F. H. Séguin, J. A. Frenje, N. Sinenian, M. J. Rosenberg, M. J.-E. Manuel, H. G. Rinderknecht, A. B. Zylstra, R. D. Petrasso, P. A. Amendt, O. L. Landen, A. J. Mackinnon, R. P. J. Town, S. C. Wilks, R. Betti, D. D. Meyerhofer, J. M. Soures, J. Hund, J. D. Kilkenny, and A. Nikroo, “Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments,” Nucl. Fusion 53, 073022 (2013).10.1088/0029-5515/53/7/073022
    [6]
    C. A. J. Palmer, P. T. Campbell, Y. Ma, L. Antonelli, A. F. A. Bott, G. Gregori, J. Halliday, Y. Katzir, P. Kordell, K. Krushelnick, S. V. Lebedev, E. Montgomery, M. Notley, D. C. Carroll, C. P. Ridgers, A. A. Schekochihin, M. J. V. Streeter, A. G. R. Thomas, E. R. Tubman, N. Woolsey, and L. Willingale, “Field reconstruction from proton radiography of intense laser driven magnetic reconnection,” Phys. Plasmas 26, 083109 (2019).10.1063/1.5092733
    [7]
    E. R. Tubman, A. S. Joglekar, A. F. A. Bott, M. Borghesi, B. Coleman, G. Cooper, C. N. Danson, P. Durey, J. M. Foster, P. Graham, G. Gregori, E. T. Gumbrell, M. P. Hill, T. Hodge, S. Kar, R. J. Kingham, M. Read, C. P. Ridgers, J. Skidmore, C. Spindloe, A. G. R. Thomas, P. Treadwell, S. Wilson, L. Willingale, and N. C. Woolsey, “Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles,” Nat. Commun. 12, 334 (2021).10.1038/s41467-020-20387-7
    [8]
    G. Gregori, A. Ravasio, C. D. Murphy, K. Schaar, A. Baird, A. R. Bell, A. Benuzzi-Mounaix, R. Bingham, C. Constantin, R. P. Drake, M. Edwards, E. T. Everson, C. D. Gregory, Y. Kuramitsu, W. Lau, J. Mithen, C. Niemann, H.-S. Park, B. A. Remington, B. Reville, A. P. L. Robinson, D. D. Ryutov, Y. Sakawa, S. Yang, N. C. Woolsey, M. Koenig, and F. Miniati, “Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves,” Nature 481, 480–483 (2012).10.1038/nature10747
    [9]
    J. Meinecke, H. W. Doyle, F. Miniati, A. R. Bell, R. Bingham, R. Crowston, R. P. Drake, M. Fatenejad, M. Koenig, Y. Kuramitsu, C. C. Kuranz, D. Q. Lamb, D. Lee, M. J. MacDonald, C. D. Murphy, H.-S. Park, A. Pelka, A. Ravasio, Y. Sakawa, A. A. Schekochihin, A. Scopatz, P. Tzeferacos, W. C. Wan, N. C. Woolsey, R. Yurchak, B. Reville, and G. Gregori, “Turbulent amplification of magnetic fields in laboratory laser-produced shock waves,” Nat. Phys. 10, 520–524 (2014).10.1038/nphys2978
    [10]
    L. J. Perkins, D. D.-M. Ho, B. G. Logan, G. B. Zimmerman, M. A. Rhodes, D. J. Strozzi, D. T. Blackfield, and S. A. Hawkins, “The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion,” Phys. Plasmas 24, 062708 (2017).10.1063/1.4985150
    [11]
    C. A. Walsh, K. McGlinchey, J. K. Tong, B. D. Appelbe, A. Crilly, M. F. Zhang, and J. P. Chittenden, “Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions,” Phys. Plasmas 26, 022701 (2019).10.1063/1.5085498
    [12]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/PhysRevLett.108.025003
    [13]
    A. B. Sefkow, S. A. Slutz, J. M. Koning, M. M. Marinak, K. J. Peterson, D. B. Sinars, and R. A. Vesey, “Design of magnetized liner inertial fusion experiments using the Z facility,” Phys. Plasmas 21, 072711 (2014).10.1063/1.4890298
    [14]
    P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107, 035006 (2011).10.1103/PhysRevLett.107.035006
    [15]
    M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19, 056306 (2012).10.1063/1.3696032
    [16]
    M. J.-E. Manuel, C. C. Kuranz, A. M. Rasmus, S. R. Klein, M. J. MacDonald, M. R. Trantham, J. R. Fein, P. X. Belancourt, R. P. Young, P. A. Keiter, R. P. Drake, B. B. Pollock, J. Park, A. U. Hazi, G. J. Williams, and H. Chen, “Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility,” High Energy Density Phys. 17, 52–62 (2015).10.1016/j.hedp.2014.07.003
    [17]
    B. Albertazzi, E. Falize, A. Pelka, F. Brack, F. Kroll, R. Yurchak, E. Brambrink, P. Mabey, N. Ozaki, S. Pikuz, L. Van Box Som, J. M. Bonnet-Bidaud, J. E. Cross, E. Filippov, G. Gregori, R. Kodama, M. Mouchet, T. Morita, Y. Sakawa, R. P. Drake, C. C. Kuranz, M. J.-E. Manuel, C. Li, P. Tzeferacos, D. Lamb, U. Schramm, and M. Koenig, “Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR,” High Power Laser Sci. Eng. 6, e43 (2018).10.1017/hpl.2018.37
    [18]
    P. Bradford, M. P. Read, M. Ehret, L. Antonelli, M. Khan, N. Booth, K. Glize, D. Carroll, R. J. Clarke, R. Heathcote, S. Ryazantsev, S. Pikuz, C. Spindloe, J. D. Moody, B. B. Pollock, V. T. Tikhonchuk, C. P. Ridgers, J. J. Santos, and N. C. Woolsey, “Proton deflectometry of a capacitor coil target along two axes,” High Power Laser Sci. Eng. 8, e11 (2020).10.1017/hpl.2020.9
    [19]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [20]
    W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).10.1364/josa.62.000055
    [21]
    L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).10.1086/111605
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (167) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return