Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Morita Hiroki, Ogitsu Tadashi, Graziani Frank R., Fujioka Shinsuke. Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation[J]. Matter and Radiation at Extremes, 2021, 6(6): 065901. doi: 10.1063/5.0053621
Citation: Morita Hiroki, Ogitsu Tadashi, Graziani Frank R., Fujioka Shinsuke. Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation[J]. Matter and Radiation at Extremes, 2021, 6(6): 065901. doi: 10.1063/5.0053621

Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation

doi: 10.1063/5.0053621
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: morita-h@ile.osaka-u.ac.jp
  • Received Date: 2021-04-09
  • Accepted Date: 2021-08-07
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-15
  • Magnetic diffusion plays an important role in inertial confinement fusion with strong magnetic fields. In this paper, we improve a previous analysis of the generation and diffusion of the magnetic field [Morita et al., Phys. Plasmas 25 , 094505 (2018)]. For the generation process, we calculate the temporal evolution of the coil current using a self-consistent circuit model. The results show that the peak of the calculated magnetic field is delayed by 1.2 ns compared with that of the incident laser pulse. For the diffusion process, we evaluate the electrical conductivity of warm dense gold over a wide temperature range (300 K–100 eV) by combining the Kubo–Greenwood formula based on a quantum molecular dynamics simulation with the modified Spitzer model. Our simulation shows that the maximum magnetic field (530 T) that penetrates the cone is delayed by 2.5 ns compared with the laser peak. This result is consistent with experiments [Sakata et al., Nat. Commun. 9 , 3937 (2018)] that showed that applying a strong magnetic field improved the heating efficiency of fusion fuel.
  • loading
  • [1]
    D. B. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. H. Barnak, S. X. Hu, K. Germaschewski, and R. K. Follett, “High-Mach number, laser-driven magnetized collisionless shocks,” Phys. Plasmas 24, 122702 (2017).10.1063/1.4989562
    [2]
    A. E. Raymond, C. F. Dong, A. McKelvey, C. Zulick, N. Alexander, A. Bhattacharjee, P. T. Campbell, H. Chen, V. Chvykov, E. Del Rio, P. Fitzsimmons, W. Fox, B. Hou, A. Maksimchuk, C. Mileham, J. Nees, P. M. Nilson, C. Stoeckl, A. G. Thomas, M. S. Wei, V. Yanovsky, K. Krushelnick, and L. Willingale, “Relativistic-electron-driven magnetic reconnection in the laboratory,” Phys. Rev. E 98(4), 043207 (2018).10.1103/physreve.98.043207
    [3]
    L. J. Perkins, B. G. Logan, G. B. Zimmerman, and C. J. Werner, “Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields,” Phys. Plasmas 20, 072708 (2013).10.1063/1.4816813
    [4]
    D. Nakamura, A. Ikeda, H. Sawabe, Y. H. Matsuda, and S. Takeyama, “Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression,” Rev. Sci. Instrum. 89, 095106 (2018).10.1063/1.5044557
    [5]
    J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17, 056318 (2010).10.1063/1.3416557
    [6]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).10.1038/srep01170
    [7]
    Z. Zhang, B. Zhu, Y. Li, W. Jiang, D. Yuan, H. Wei, G. Liang, F. Wang, G. Zhao, J. Zhong, B. Han, N. Hua, B. Zhu, J. Zhu, C. Wang, Z. Fang, and J. Zhang, “Generation of strong magnetic fields with a laser-driven coil,” High Power Laser Sci. Eng. 6, e38 (2018).10.1017/hpl.2018.33
    [8]
    X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L. Wang, and G. Zhao, “Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target,” Phys. Plasmas 23, 032125 (2016).10.1063/1.4944928
    [9]
    K. Matsuo, H. Nagatomo, Z. Zhang, P. Nicolai, T. Sano, S. Sakata, S. Kojima, S. H. Lee, K. F. F. Law, Y. Arikawa, Y. Sakawa, T. Morita, Y. Kuramitsu, S. Fujioka, and H. Azechi, “Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field,” Phys. Rev. E 95(5), 053204 (2017).10.1103/physreve.95.053204
    [10]
    T. Morita, “Topological investigation of laser ion acceleration,” Plasma Phys. Controlled Fusion 62, 105003 (2020).10.1088/1361-6587/aba766
    [11]
    K. L. Lancaster, J. S. Green, D. S. Hey, K. U. Akli, J. R. Davies, R. J. Clarke, R. R. Freeman, H. Habara, M. H. Key, R. Kodama, K. Krushelnick, C. D. Murphy, M. Nakatsutsumi, P. Simpson, R. Stephens, C. Stoeckl, T. Yabuuchi, M. Zepf, and P. A. Norreys, “Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 ×1020 W cm−2,” Phys. Rev. Lett. 98, 125002 (2007).10.1103/physrevlett.98.125002
    [12]
    J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies, and P. A. Norreys, “Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas,” Phys. Rev. Lett. 100(1), 015003–015004 (2008).10.1103/PhysRevLett.100.015003
    [13]
    H.-b. Cai, S.-p. Zhu, and X. T. He, “Effects of the imposed magnetic field on the production and transport of relativistic electron beams,” Phys. Plasmas 20, 072701 (2013).10.1063/1.4812631
    [14]
    M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J.-L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J.-R. Marquès, A. Morace, P. Nicolaï, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, and Z. Zhang, “Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields,” Nat. Commun. 9, 102 (2018).10.1038/s41467-017-02641-7
    [15]
    S. Sakata, S. Lee, H. Morita, T. Johzaki, H. Sawada, Y. Iwasa, K. Matsuo, K. F. F. Law, A. Yao, M. Hata, A. Sunahara, S. Kojima, Y. Abe, H. Kishimoto, A. Syuhada, T. Shiroto, A. Morace, A. Yogo, N. Iwata, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, N. Miyanaga, J. Kawanaka, H. Shiraga, K. Mima, H. Nishimura, M. Bailly-Grandvaux, J. J. Santos, H. Nagatomo, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku, and S. Fujioka, “Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states,” Nat. Commun. 9, 3937 (2018).10.1038/s41467-018-06173-6
    [16]
    K. Matsuo, N. Higashi, N. Iwata, S. Sakata, S. Lee, T. Johzaki, H. Sawada, Y. Iwasa, K. F. F. Law, H. Morita, Y. Ochiai, S. Kojima, Y. Abe, M. Hata, T. Sano, H. Nagatomo, A. Sunahara, A. Morace, A. Yogo, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, J. Kawanaka, H. Shiraga, K. Mima, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku, and S. Fujioka, “Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse,” Phys. Rev. Lett. 124, 035001 (2020).10.1103/PhysRevLett.124.035001
    [17]
    W. Theobald, A. A. Solodov, C. Stoeckl, K. S. Anderson, F. N. Beg, R. Epstein, G. Fiksel, E. M. Giraldez, V. Y. Glebov, H. Habara, S. Ivancic, L. C. Jarrott, F. J. Marshall, G. McKiernan, H. S. McLean, C. Mileham, P. M. Nilson, P. K. Patel, F. Pérez, T. C. Sangster, J. J. Santos, H. Sawada, A. Shvydky, R. B. Stephens, and M. S. Wei, “Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion,” Nat. Commun. 5, 5785 (2014).10.1038/ncomms6785
    [18]
    L. C. Jarrott, M. S. Wei, C. McGuffey, A. A. Solodov, W. Theobald, B. Qiao, C. Stoeckl, R. Betti, H. Chen, J. Delettrez, T. Döppner, E. M. Giraldez, V. Y. Glebov, H. Habara, T. Iwawaki, M. H. Key, R. W. Luo, F. J. Marshall, H. S. Mclean, C. Mileham, P. K. Patel, J. J. Santos, H. Sawada, R. B. Stephens, T. Yabuuchi, and F. N. Beg, “Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets,” Nat. Phys. 12, 499–504 (2016).10.1038/nphys3614
    [19]
    H. Morita, A. Sunahara, Y. Arikawa, H. Azechi, and S. Fujioka, “Numerical analysis of pulsed magnetic field diffusion dynamics in gold cone target,” Phys. Plasmas 25, 094505 (2018).10.1063/1.5050845
    [20]
    Z. Fu, L. Jia, X. Sun, and Q. Chen, “Electrical conductivity of warm dense tungsten,” High Energy Density Phys. 9, 781–786 (2013).10.1016/j.hedp.2013.10.003
    [21]
    H. Morita, B. B. Pollock, C. S. Goyon, G. J. Williams, K. F. F. Law, S. Fujioka, and J. D. Moody, “Dynamics of laser-generated magnetic fields using long laser pulses,” Phys. Rev. E 103, 033201 (2021).10.1103/PhysRevE.103.033201
    [22]
    C. Courtois, A. D. Ash, D. M. Chambers, R. A. D. Grundy, and N. C. Woolsey, “Creation of a uniform high magnetic-field strength environment for laser-driven experiments,” J. Appl. Phys. 98, 054913 (2005).10.1063/1.2035896
    [23]
    G. Fiksel, W. Fox, L. Gao, and H. Ji, “A simple model for estimating a magnetic field in laser-driven coils,” Appl. Phys. Lett. 109, 134103 (2016).10.1063/1.4963763
    [24]
    V. T. Tikhonchuk, M. Bailly-Grandvaux, J. J. Santos, and A. Poyé, “Quasi-stationary magnetic field generation with a laser-driven capacitor-coil assembly,” Phys. Rev. E 96, 023202 (2017).10.1103/PhysRevE.96.023202
    [25]
    K. F. F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, and H. Azechi, “Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry,” Appl. Phys. Lett. 108, 091104 (2016).10.1063/1.4943078
    [26]
    G. J. Williams, S. Patankar, D. A. Mariscal, V. T. Tikhonchuk, J. D. Bude, C. W. Carr, C. Goyon, M. A. Norton, B. B. Pollock, A. M. Rubenchik, G. F. Swadling, E. R. Tubman, and J. D. Moody, “Laser intensity scaling of the magnetic field from a laser-driven coil target,” J. Appl. Phys. 127, 083302 (2020).10.1063/1.5117162
    [27]
    R. L. Keck, L. M. Goldman, M. C. Richardson, W. Seka, and K. Tanaka, “Observations of high-energy electron distributions in laser plasmas,” Phys. Fluids 27, 2762 (1984).10.1063/1.864581
    [28]
    K. R. Manes, H. G. Ahlstrom, R. A. Haas, and J. F. Holzrichter, “Light-plasma interaction studies with high-power glass laser,” J. Opt. Soc. Am. 67(6), 717–726 (1977).10.1364/josa.67.000717
    [29]
    D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39(5), 284–287 (1977).10.1103/physrevlett.39.284
    [30]
    W. Priedhorsky, D. Lier, R. Day, and D. Gerke, “Hard-x-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47(23), 1661–1664 (1981).10.1103/physrevlett.47.1661
    [31]
    S. Christian, C. Andreas, and F. Wolfgang, “Review of FDTD time-stepping schemes for efficient simulation of electric conductive media,” Microwave Opt. Technol. Lett. 25(1), 16–21 (2000).10.1002/(SICI)1098-2760(20000405)25:1<16::AID-MOP6>3.0.CO;2-O
    [32]
    F. Schillaci, M. De Marco, L. Giuffrida, S. Fujioka, Z. Zhang, G. Korn, and D. Margarone, “Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields,” AIP Adv. 8, 025103 (2018).10.1063/1.5019219
    [33]
    Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273 (1984).10.1063/1.864744
    [34]
    M. P. Desjarlais, “Practical improvements to the Lee-More conductivity near the metal-insulator transition,” Contrib. Plasma Phys. 41, 267 (2001).10.1002/1521-3986(200103)41:2/3<267::aid-ctpp267>3.0.co;2-p
    [35]
    M. Yousuf, P. C. Sahu, and G. K. Rajan, “High-pressure and high-temperature electrical resistivity of ferromagnetic transition metals: Nickel and iron,” Phys. Rev. B 34, 8086 (1986).10.1103/physrevb.34.8086
    [36]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
    [37]
    S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81(1), 511–519 (1984).10.1063/1.447334
    [38]
    X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. J. T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J. W. Zwanziger, “Recent developments in the ABINIT software package,” Comput. Phys. Commun. 205, 106–131 (2016).10.1016/j.cpc.2016.04.003
    [39]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
    [40]
    D. J. Chadi and M. L. Cohen, “Special points in the Brillouin zone,” Phys. Rev. B 8(12), 5747–5753 (1973).10.1103/physrevb.8.5747
    [41]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188 (1976).10.1103/physrevb.13.5188
    [42]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).10.1103/physrevlett.77.3865
    [43]
    M. Pozzo, M. P. Desjarlais, and D. Alfè, “Electrical and thermal conductivity of liquid sodium from first-principles calculations,” Phys. Rev. B 84, 054203 (2011).10.1103/physrevb.84.054203
    [44]
    D. Liu, W. Fan, L. Shan, C. Tian, B. Bi, F. Zhang, Z. Yuan, W. Wang, H. Liu, L. Yang, L. Meng, L. Cao, W. Zhou, and Y. Gu, “Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime,” Phys. Plasmas 26, 122705 (2019).10.1063/1.5123512
    [45]
    M. R. Zaghloul, M. A. Bourham, J. M. Doster, and J. D. Powell, “On the average electron-ion momentum transport cross-section in ideal and non-ideal plasmas,” Phys. Lett. A 262(1), 86–89 (1999).10.1016/s0375-9601(99)00560-5
    [46]
    M. R. Zaghloul, “A simple theoretical approach to calculate the electrical conductivity of nonideal copper plasma,” Phys. Plasmas 15, 042705 (2008).10.1063/1.2903902
    [47]
    I. M. Bespalov and A. Y. Polishchuk, “Method for calculating the degree of ionization and the thermal and electrical conductivity over a wide range of density and temperature,” Sov. Tech. Phys. Lett. 15, 39–41 (1989).
    [48]
    J. R. A. Kramida, Y. Ralchenko, and N. A. Team, NIST Atomic Spectra Database (version 5.5.6), National Institute of Standards and Technology, Gaithersburg, MD, 2018.
    [49]
    B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, Z. Chen, S. E. Kirkwood, V. Sametoglu, M. Reid, and Y. Y. Tsui, “Ab initio model of optical properties of two-temperature warm dense matter,” Phys. Rev. B 90, 035121 (2014).10.1103/physrevb.90.035121
    [50]
    A. Ng, P. Sterne, S. Hansen, V. Recoules, Z. Chen, Y. Y. Tsui, and B. Wilson, “dc conductivity of two-temperature warm dense gold,” Phys. Rev. E 94, 033213 (2016).10.1103/PhysRevE.94.033213
    [51]
    R. Matula, “Resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147 (1979).10.1063/1.555614
    [52]
    T. Sasaki, K. Takahashi, T. Kikuchi, A. Sunahara, H. Nagatomo, and S. Fujioka, “A numerical study on the pulse duration dependence of a magnetic field generated using a laser-driven capacitor-coil target,” High Energy Density Phys. 36, 100818 (2020).10.1016/j.hedp.2020.100818
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (438) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return