Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Raffestin D., Lecherbourg L., Lantuéjoul I., Vauzour B., Masson-Laborde P. E., Davoine X., Blanchot N., Dubois J. L., Vaisseau X., d’Humières E., Gremillet L., Duval A., Reverdin Ch., Rosse B., Boutoux G., Ducret J. E., Rousseaux Ch., Tikhonchuk V., Batani D.. Enhanced ion acceleration using the high-energy petawatt PETAL laser[J]. Matter and Radiation at Extremes, 2021, 6(5): 056901. doi: 10.1063/5.0046679
Citation: Raffestin D., Lecherbourg L., Lantuéjoul I., Vauzour B., Masson-Laborde P. E., Davoine X., Blanchot N., Dubois J. L., Vaisseau X., d’Humières E., Gremillet L., Duval A., Reverdin Ch., Rosse B., Boutoux G., Ducret J. E., Rousseaux Ch., Tikhonchuk V., Batani D.. Enhanced ion acceleration using the high-energy petawatt PETAL laser[J]. Matter and Radiation at Extremes, 2021, 6(5): 056901. doi: 10.1063/5.0046679

Enhanced ion acceleration using the high-energy petawatt PETAL laser

doi: 10.1063/5.0046679
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: didier.raffestin@u-bordeaux.fr
  • Received Date: 2021-02-05
  • Accepted Date: 2021-07-18
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • The high-energy petawatt PETAL laser system was commissioned at CEA’s Laser Mégajoule facility during the 2017–2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<1019 W/cm2) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (∼100 μm) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements.
  • loading
  • [1]
    A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J. P. Jadaud, J. P. LeBreton, C. Reverdin, B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel, and J. L. Miquel, “LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics,” High Energy Density Phys. 17, 2–11 (2015).10.1016/j.hedp.2014.11.009
    [2]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [3]
    D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, O. Klimo, M. Koenig, C. Labaune, X. Ribeyre, C. Rousseaux, G. Schurtz, W. Theobald, and V. T. Tikhonchuk, “Physical issues in shock ignition,” Nucl. Fusion 54, 054009 (2014).10.1088/0029-5515/54/5/054009
    [4]
    L. Volpe, D. Batani, B. Vauzour, Ph. Nicolai, J. J. Santos, C. Regan, A. Morace, F. Dorchies, C. Fourment, S. Hulin, F. Perez et al., “Proton radiography of laser-driven imploding target in cylindrical geometry,” Phys. Plasmas 18, 012704 (2011).10.1063/1.3530596
    [5]
    A. Morace, L. Fedeli, D. Batani, S. Baton, F. N. Beg, S. Hulin, L. C. Jarrott, A. Margarit, M. Nakai, M. Nakatsutsumi, P. Nicolai, N. Piovella, M. S. Wei, X. Vaisseau, L. Volpe, and J. J. Santos, “Development of x-ray radiography for high energy density physics,” Phys. Plasmas 21, 102712 (2014).10.1063/1.4900867
    [6]
    L. Antonelli, F. Barbato, D. Mancelli, J. Trela, G. Zeraouli, G. Boutoux, P. Neumayer, S. Atzeni, A. Schiavi, L. Volpe, V. Bagnoud, C. Brabetz, B. Zielbauer, P. Bradford, N. Woolsey, B. Borm, and D. Batani, “X-ray phase-contrast imaging for laser-induced shock waves,” Europhys. Lett. 125, 35002 (2019).10.1209/0295-5075/125/35002
    [7]
    A. Schönlein, G. Boutoux, S. Pikuz, L. Antonelli, D. Batani, A. Debayle, A. Franz, L. Giuffrida, J. J. Honrubia, J. Jacoby, D. Khaghani, P. Neumayer, O. N. Rosmej, T. Sakaki, J. J. Santos, and A. Sauteray, “Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target,” Europhys. Lett. 114, 45002 (2016).10.1209/0295-5075/114/45002
    [8]
    D. J. Hoarty, T. Guymer, S. F. James, E. Gumbrell, C. R. D. Brown, M. Hill, J. Morton, and H. Doyle, “Equation of state studies of warm dense matter samples heated by laser produced proton beams,” High Energy Density Phys. 8, 50–54 (2012).10.1016/j.hedp.2011.11.008
    [9]
    K. Jakubowska, D. Batani, J.-F. Feugeas, P. Forestier-Colleoni, S. Hulin, P. Nicolaï, J. J. Santos, A. Flacco, B. Vauzour, and V. Malka, “Generation of high-pressures by short-pulse low-energy laser irradiation by short-pulse low-energy laser irradiation,” Europhys. Lett. 119, 35001 (2017).10.1209/0295-5075/119/35001
    [10]
    J. C. Fernández, B. J. Albright, F. N. Beg, M. E. Foord, B. M. Hegelich, J. J. Honrubia, M. Roth, R. B. Stephens, and L. Yin, “Fast ignition with laser-driven proton and ion beams,” Nucl. Fusion 54, 054006 (2014).10.1088/0029-5515/54/5/054006
    [11]
    P. Norreys, D. Batani, S. Baton, F. N. Beg, R. Kodama, P. M. Nilson, P. Patel, F. Pérez, J. J. Santos, R. H. H. Scott, V. T. Tikhonchuk, M. Wei, and J. Zhang, “Fast electron energy transport in solid density and compressed plasma,” Nucl. Fusion 54, 054004 (2014).10.1088/0029-5515/54/5/054004
    [12]
    M. J. Guardalben, M. Barczys, B. E. Kruschwitz, M. Spilatro, L. J. Waxer, and E. M. Hill, “Laser-system model for enhanced operational performance and flexibility on OMEGA EP,” High Power Laser Sci. Eng. 8, e8 (2020).10.1017/hpl.2020.6
    [13]
    R. L. Acree, Jr., J. E. Heebner, M. A. Prantil, J. M. Halpin, T. S. Budge, L. A. Novikova, R. Sigurdsson, and L. J. Pelz, “Pulse contrast measurement on the NIF advanced radiographic capability (ARC) laser system,” Proc. SPIE 10084, 1008406 (2017).10.1117/12.2257576
    [14]
    Y. Arikawa, S. Kojima, A. Morace, S. Sakata, T. Gawa, Y. Taguchi, Y. Abe, Z. Zhang, X. Vaisseau, S. H. Lee, K. Matsuo et al., “Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror,” Appl. Opt. 55, 6850–6857 (2016).10.1364/ao.55.006850
    [15]
    J. Zhu, J. Zhu, X. Li, B. Zhu, W. Ma, X. Lu, W. Fan, Z. Liu, S. Zhou, G. Xu, G. Zhang et al., “Status and development of high-power laser facilities at the NLHPLP,” High Power Laser Sci. Eng. 6, e55 (2018).10.1017/hpl.2018.46
    [16]
    J.-L. Miquel, D. Batani, and N. Blanchot, “Overview of the laser mega joule (LMJ) facility and PETAL project in France,” Rev. Laser Eng. 42, 131–136 (2014).10.2184/lsj.42.2_131
    [17]
    N. Blanchot et al., “Overview of PETAL, the multi-Petawatt project in the LMJ facility,” EPJ Web Conf 59 (2013).10.1051/epjconf/20135907001
    [18]
    J.-L. Miquel and E. Prene, “LMJ and PETAL status and program overview,” Nucl. Fusion 59, 032005 (2018).10.1088/1741-4326/aac343
    [19]
    J. Kim et al., “Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers,” Phys. Plasmas 25, 083109 (2018).10.1063/1.5040410
    [20]
    A. J. Kemp and S. C. Wilks, “Direct electron acceleration in multi-kilojoule, multi-picosecond laser pulses,” Phys. Plasmas 27, 103106 (2020).10.1063/5.0007159
    [21]
    J. Park et al., “Target normal sheath acceleration with a large laser focal diameter,” Phys. Plasmas 27, 123104 (2020).10.1063/5.0020609
    [22]
    A. Morace et al., “Enhancing laser beam performance by interfering intense laser beamlets,” Nat. Commun. 10, 2995 (2019).10.1038/s41467-019-10997-1
    [23]
    R. A. Simpson et al., “Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime,” Phys. Plasmas 28, 013108 (2021).10.1063/5.0023612
    [24]
    K. Flippo et al., “Omega EP, laser scalings and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime,” J. Phys.: Conf. Ser. 244, 022033 (2010).10.1088/1742-6596/244/2/022033
    [25]
    A. Yogo et al., “Boosting laser-ion acceleration with multi-picosecond pulses,” Sci. Rep. 7, 42451 (2017).10.1038/srep42451
    [26]
    D. Mariscal et al., “First demonstration of ARC-accelerated proton beams at the National Ignition Facility,” Phys. Plasmas 26, 043110 (2019).10.1063/1.5085787
    [27]
    D. Margarone et al., “Generation of α-particle beams with a multi-kJ, peta-watt class laser system,” Front. Phys. 8, 343 (2020).10.3389/fphy.2020.00343
    [28]
    D. Batani, S. Hulin, J. E. Ducret, E. d’Humieres, V. Tikhonchuk, J. Caron, J. L. Feugeas, P. Nicolai, M. Koenig, S. Bastiani-Ceccotti, J. Fuchs, T. Ceccotti, S. Dobosz-Dufrenoy, C. Szabo-Foster, L. Serani, L. Volpe, C. Perego, I. Lantuejoul-Thfoin, E. Lefebvre, A. Compant La Fontaine, J. L. Miquel, N. Blanchot, A. Casner, A. Duval, Ch. Reverdin, R. Wrobel, J. Gazave, J. L. Dubois, and D. Raffestin, “Development of the PETAL laser facility and its diagnostic tools,” Acta Polytech. 53, 103–109 (2013).10.14311/1721
    [29]
    I. Thfoin, Ch. Reverdin, S. Hulin, C. Szabo, S. Bastiani-Ceccotti, D. Batani, E. Brambrink, M. Koenig, A. Duval, X. Leboeuf, L. Lecherbourg, B. Rossé, Al. Morace, J. Santos, X. Vaisseau, C. Fourment, L. Giuffrida, and M. Nakatsutsumi, “Monte-Carlo simulation of noise in hard x-ray transmission crystal spectrometers: Identification of contributors to the background noise and shielding optimization,” Rev. Sci. Instrum. 85, 11D615 (2014).10.1063/1.4890534
    [30]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8
    [31]
    N. Blanchot, G. Béhar, J. C. Chapuis, C. Chappuis, S. Chardavoine, J. F. Charrier, H. Coïc, C. Damiens-Dupont, J. Duthu, P. Garcia et al., “1.15 PW–850 J compressed beam demonstration using the PETAL facility,” Opt. Express 25, 16957 (2017).10.1364/oe.25.016957
    [32]
    J. Néauport, N. Blanchot, C. Rouyer, and C. Sauteret, “Chromatism compensation of the PETAL multipetawatt high-energy laser,” Appl. Opt. 46, 1568–1574 (2007).10.1364/ao.46.001568
    [33]
    C. N. Danson et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [34]
    M. Sozet et al., “Sub-picosecond laser damage growth on high reflective coatings for high power applications,” Opt. Express 25, 25767 (2017).10.1364/oe.25.025767
    [35]
    D. Raffestin et al., “Application of harmonics imaging to focal spot measurements of the ‘PETAL’ laser,” J. Appl. Phys. 126, 245902 (2019).10.1063/1.5129856
    [36]
    J.-E. Ducret, D. Batani, G. Boutoux, A. Chancé, B. Gastineau, J.-C. Guillard, F. Harrault, K. Jakubowska, I. Lantuejoul-Thfoin, D. Leboeuf, D. Loiseau, A. Lotode, C. Pès, N. Rabhi, A. Saïd, A. Semsoum, L. Serani, B. Thomas, J.-C. Toussaint, and B. Vauzour, “Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions,” Rev. Sci. Instrum. 89, 023304 (2018).10.1063/1.5009737
    [37]
    I. Lantuejoul et al., “SEPAGE: A proton-ion-electron spectrometer for LMJ-PETAL,” Proc. SPIE 10763, 107630X (2018).10.1117/12.2504146
    [38]
    N. Rabhi et al., “Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV,” Rev. Sci. Instrum. 88, 113301 (2017).10.1063/1.5009472
    [39]
    J.-E. Ducret, S. Bastiani-Ceccotti, D. Batani, N. Blanchot, E. Brambrink, A. Casner, T. Ceccotti, A. Compant La Fontaine, E. d’Humières, S. Dobosz-Dufrénoy, A. Duval, J. Fuchs, S. Hulin, M. Koenig, I. Lantuéjoul-Thfoin, E. Lefebvre, J.-R. Marquès, J.-L. Miquel, C. Reverdin, L. Serani, C. Szabo-Foster, and R. Wrobel, “The PETAL+ project: X-ray and charged particle diagnostics for plasma experiments at LMJ-PETAL,” Nucl. Instrum. Methods Phys. Res., Sect. A 720, 141 (2013).10.1016/j.nima.2012.12.015
    [40]
    G. Boutoux et al., “Study of imaging plate detector sensitivity to 5-18 MeV electrons,” Rev. Sci. Instrum. 86, 113304 (2015).10.1063/1.4936141
    [41]
    N. Rabhi et al., “Calibration of imaging plates to electrons between 40 and 180 MeV,” Rev. Sci. Instrum. 87, 053306 (2016).10.1063/1.4950860
    [42]
    F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser–solid interactions up to 1019 W cm−2,” Phys. Plasmas 4, 447 (1997).10.1063/1.872103
    [43]
    H. Chen, S. C. Wilks, W. L. Kruer, P. K. Patel, and R. Shepherd, “Hot electron energy distributions from ultraintense laser solid interactions,” Phys. Plasmas 16, 020705 (2009).10.1063/1.3080197
    [44]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [45]
    A. Debayle, J. J. Honrubia, E. d’Humières, and V. T. Tikhonchuk, “Divergence of laser-driven relativistic electron beams,” Phys. Rev. E 82, 036405 (2010).10.1103/PhysRevE.82.036405
    [46]
    A. J. Kemp and L. Divol, “Interaction physics of multipicosecond petawatt laser pulses with overdense plasma,” Phys. Rev. Lett. 109, 195005 (2012).10.1103/physrevlett.109.195005
    [47]
    M. J. Mead, D. Neely, J. Gauoin, R. Heathcote, and P. Patel, “Electromagnetic pulse generation within a petawatt laser target chamber,” Rev. Sci. Instrum. 75, 4225 (2004).10.1063/1.1787606
    [48]
    C. G. Brown, Jr., A. Throop, D. Eder, and J. Kimbrough, “Electromagnetic pulses at short-pulse laser facilities,” J. Phys.: Conf. Ser. 112, 032025 (2008).10.1088/1742-6596/112/3/032025
    [49]
    D. C. Eder, A. Throop, C. G. Brown, Jr., J. Kimbrough, M. L. Stowell, D. A. White, P. Song, N. Back, A. MacPhee, H. Chen, W. Dehope, Y. Ping, B. Maddox, J. Lister, G. Pratt, T. Ma, Y. Tsui, M. Perking, D. O’Brien, and P. Patel, “Mitigation of electromagnetic pulse (EMP) effects from short-pulse lasers and fusion neutrons,” Technical Report No. LLNL-TR-411183, Lawrence Livermore National Laboratory, 2009, pp. 1–35.
    [50]
    F. S. Felber, “Dipole radio-frequency power from laser plasmas with no dipole moment,” Appl. Phys. Lett. 86, 231501 (2005).10.1063/1.1947911
    [51]
    F. Consoli et al., “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Sci. Eng. 8, e22 (2020).10.1017/hpl.2020.13
    [52]
    J.-L. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave, A. Compant La Fontaine, E. d’Humières, S. Hulin, P. Nicolaï, A. Poyé, and V. T. Tikhonchuk, “Target charging in short-pulse-laser–plasma experiments,” Phys. Rev. E 89, 013102 (2014).10.1103/PhysRevE.89.013102
    [53]
    J. L. Dubois, P. Rączka, S. Hulin, M. Rosiński, L. Ryć, P. Parys, A. Zaraś-Szydłowska, D. Makaruk, P. Tchórz, J. Badziak, J. Wołowski, J. Ribolzi, and V. Tikhonchuk, “Experimental demonstration of an electromagnetic pulse mitigation concept for a laser driven proton source,” Rev. Sci. Instrum. 89, 103301 (2018).10.1063/1.5038652
    [54]
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley &amp; Sons, Inc., 1998), Sec. 15.6.
    [55]
    V. Y. Bychenkov, V. N. Novikov, D. Batani, V. T. Tikhonchuk, and S. G. Bochkarev, “Ion acceleration from expanding multispecies plasma,” Phys. Plasmas 11, 3242 (2004).10.1063/1.1738649
    [56]
    M. Roth et al., “Laser accelerated ions in ICF research prospects and experiments,” Plasma Phys. Controlled Fusion 47, B841 (2005).10.1088/0741-3335/47/12b/s66
    [57]
    F. Lindau, O. Lundh, A. Persson, P. McKenna, K. Osvay, D. Batani, and C.-G. Wahlström, “Laser-accelerated protons with energy-dependent beam direction,” Phys. Rev. Lett. 95, 175002 (2005).10.1103/physrevlett.95.175002
    [58]
    V. Malka, J. Faure, S. Fritzler, M. Manclossi, A. Guemnie-Tafo, E. d’Humières, E. Lefebvre, and D. Batani, “Production of energetic proton beams with lasers,” Rev. Sci. Instrum. 77, 03B302 (2006).10.1063/1.2170031
    [59]
    M. Passoni, C. Perego, A. Sgattoni, and D. Batani, “Advances in target normal sheath acceleration theory,” Phys. Plasmas 20, 060701 (2013).10.1063/1.4812708
    [60]
    M. Kaluza, J. Schreiber, M. I. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and K. J. Witte, “Influence of the laser prepulse on proton acceleration in thin-foil experiments,” Phys. Rev. Lett. 93, 045003 (2004).10.1103/PhysRevLett.93.045003
    [61]
    D. Batani, R. Jafer, M. Veltcheva, R. Dezulian, O. Lundh, F. Lindau, A. Persson, K. Osvay, C.-G. Wahlström, D. C. Carroll, P. McKenna, A. Flacco, and V. Malka, “Effects of laser prepulses on laser-induced proton generation,” New J. Phys. 12, 045018 (2010).10.1088/1367-2630/12/4/045018
    [62]
    E. Lefebvre et al., “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2019).10.1088/1741-4326/aacc9c
    [63]
    E. Lefebvre et al., “Electron and photon production from relativistic laser-plasma interactions,” Nucl. Fusion 43, 629 (2003).10.1088/0029-5515/43/7/317
    [64]
    A. F. Lifschitz et al., “Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition,” J. Comput. Phys. 228, 1803 (2009).10.1016/j.jcp.2008.11.017
    [65]
    G. P. Schurtz, Ph. D. Nicolaï, and M. Busquet, “A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,” Phys. Plasmas 7, 4238 (2000).10.1063/1.1289512
    [66]
    A. Bourdier, D. Patin, and E. Lefebvre, Physica D 206, 1 (2005).10.1016/j.physd.2005.04.017
    [67]
    Z.-M. Sheng, K. Mima, J. Zhang, and J. Meyer-ter-Vehn, Phys. Rev. E 69, 016407 (2004).10.1103/physreve.69.016407
    [68]
    J. T. Mendonça, Phys. Rev. A 28, 3592 (1983).10.1103/physreva.28.3592
    [69]
    S. G. Bochkarev, E. d’Humières, V. T. Tikhonchuk, Ph. Korneev, and V. Yu. Bychenkov, “Stochastic electron heating in an interference field of several laser pulses of a picosecond duration,” Plasma Phys. Controlled Fusion 61, 025015 (2019).10.1088/1361-6587/aaf7e1
    [70]
    X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, A. Lifschitz, and V. Malka, “Simulation of quasimonoenergetic electron beams produced by colliding pulse wakefield acceleration,” Phys. Plasmas 15, 113102 (2008).10.1063/1.3008051
    [71]
    R. Babjak and J. Psikal, “The role of standing wave in the generation of hot electrons by femtosecond laser beams incident on dense ionized target,” Phys. Plasmas 28, 023107 (2021).10.1063/5.0031555
    [72]
    N. Iwata, K. Mima, Y. Sentoku, A. Yogo, H. Nagatomo, H. Nishimura, and H. Azechi, “Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser,” Phys. Plasmas 24, 073111 (2017).10.1063/1.4990703
    [73]
    G. J. Williams et al., “Production of relativistic electrons at subrelativistic laser intensities,” Phys. Rev. E 101, 031201(R) (2020).10.1103/PhysRevE.101.031201
    [74]
    B. S. Paradkar, M. S. Wei, T. Yabuuchi, R. B. Stephens, M. G. Haines, S. I. Krasheninnikov, and F. N. Beg, Phys. Rev. E 83, 046401 (2011).10.1103/physreve.83.046401
    [75]
    A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, Phys. Plasmas 6, 2847 (1999).10.1063/1.873242
    [76]
    T. Wang et al., “Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses,” Phys. Plasmas 26, 083101 (2019).10.1063/1.5110407
    [77]
    A. V. Arefiev et al., “Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in subcritical plasmas,” Phys. Plasmas 23, 056704 (2016).10.1063/1.4946024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (252) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return