Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Rosmej F. B., Astapenko V. A., Khramov E. S.. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001. doi: 10.1063/5.0046040
Citation: Rosmej F. B., Astapenko V. A., Khramov E. S.. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001. doi: 10.1063/5.0046040

XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes

doi: 10.1063/5.0046040
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: frank.rosmej@sorbonne-universite.fr
  • Received Date: 2021-01-31
  • Accepted Date: 2021-02-25
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • The theory of photoionization describing the interaction of x-ray free-electron laser (XFEL) pulses and high-harmonic-generated (HHG) radiation is generalized to ultrashort laser pulses, where the concept of the standard ionization probability per unit time in Fermi’s golden rule and in Einstein’s theory breaks down. Numerical calculations carried out in terms of a generalized photoionization probability for the total duration of pulses in the near-threshold regime demonstrate essentially nonlinear behavior, while absolute values may change by orders of magnitude for typical XFEL and HHG pulses. XFEL self-amplified spontaneous emission pulses are analyzed to reveal general features of photoionization for random and regular spikes: the dependences of the nonlinear photoionization probability on carrier frequency and spike duration are very similar, allowing an analytical expectation value approach that is valid even when there is only limited knowledge of random and regular parameters. Numerical simulations carried out for typical parameters demonstrate excellent agreement.
  • loading
  • [1]
    W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986).
    [2]
    S. Ichimaru, Statistical Plasmas Physics Vol. II: Condensed Plasmas (Westview Press, Oxford, 2004).
    [3]
    R. Drake, High-Energy-Density Physics (Springer, Berlin, 2006).
    [4]
    F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer Science & Business, 2014), Vol. 96.
    [5]
    M. Harmand, A. Ravasio, S. Mazevet et al., “X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments,” Phys. Rev. B 92, 024108 (2015).10.1103/physrevb.92.024108
    [6]
    F. Dorchies, F. Festa, V. Recoules et al., “X-ray absorption K-edge as a diagnostic of the electronic temperature in warm dense aluminum,” Phys. Rev. B 92, 085117 (2015).10.1103/physrevb.92.085117
    [7]
    S. Zhang, S. Zhao, W. Kang et al., “Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an imporved first-principles method,” Phys. Rev. B 93, 115114 (2016).10.1103/physrevb.93.115114
    [8]
    R. Cheng, Y. Lei, X. Zhou et al., “Warm dense matter research at HIAF,” Matter Radiat. Extremes 3, 85 (2018).10.1016/j.mre.2017.11.001
    [9]
    R. W. Lee, S. J. Moon, H.-K. Chung et al., “Finite temperature dense matter studies on next generation light sources,” J. Opt. Soc. Am. B 20, 770 (2003).10.1364/josab.20.000770
    [10]
    D. Riley, “Generation and characterisation of warm dense matter with intense lasers,” Plasma Phys. Controlled Fusion 60, 014033 (2017).10.1088/1361-6587/aa8dd5
    [11]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [12]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
    [13]
    M. Smid, O. Renner, A. Colaitis et al., “Characterization of suprathermal electrons inside laser accelerated solid density matter via axially-resolved Kα-emission,” Nat. Commun. 10, 4212 (2019).10.1038/s41467-019-12008-9
    [14]
    Free Electron Lasers, edited by S. Varro (Intech, Rijeka, 2012).
    [15]
    https://lcls.slac.stanford.edu, X-ray FEL LCLS, 2020.
    [16]
    https://www.xfel.eu/, X-ray FEL EU-XFEL, 2020.
    [17]
    http://xfel.riken.jp/eng/, X-ray FEL SACLA, 2020.
    [18]
    O. Gorobtsov, U. Lorenz, N. Kabachnik et al., “Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs,” Phys. Rev. E 91, 062712 (2015).10.1103/physreve.91.062712
    [19]
    A. G. de la Varga, P. Velarde, F. de Gaufridy et al., “Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser,” High Energy Density Phys. 9, 542 (2013).10.1016/j.hedp.2013.05.010
    [20]
    S. J. Rose, “The effect of a radiation field on exciation and ionisation in non-LTE high energy density plasmas,” High Energy Density Phys. 5, 23 (2009).10.1016/j.hedp.2009.02.002
    [21]
    H.-K. Chung, M. H. Chen, W. L. Morgan et al., “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001
    [22]
    C. Gao, J. Zeng, and J. Yuan, “Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations,” High Energy Density Phys. 14, 52 (2015).10.1016/j.hedp.2015.03.003
    [23]
    S.-K. Son, L. Young, and R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity,” Phys. Rev. A 83, 033402 (2011).10.1103/PhysRevA.83.033402
    [24]
    O. Peyrusse, “Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to x-ray free-electron-laser radiation,” Phys. Rev. E 86, 036403 (2012).10.1103/physreve.86.036403
    [25]
    E. Schneidmiller and M. Yurkov, “Photon beam properties at the European XFEL,” Technical Report No. XFEL.EU TR-2011-006, Deutsches Elektronen-Synchrotron DESY, 2011.
    [26]
    T. Tanaka, “Proposal to generate an isolated monocycle x-ray pulse by counteracting the slippage effect in free-electron lasers,” Phys. Rev. Lett. 114, 044801 (2015).10.1103/physrevlett.114.044801
    [27]
    Y. Kida, R. Kinjo, and T. Tanaka, “Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers,” Appl. Phys. Lett. 109, 151107 (2016).10.1063/1.4964643
    [28]
    G. Geloni, E. Saldin, L. Samoylova et al., “Coherence properties of the European XFEL,” New J. Phys. 12, 035021 (2010).10.1088/1367-2630/12/3/035021
    [29]
    S. Roling, H. Zacharias, L. Samoylova et al., “Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers,” Phys. Rev. Spec. Top.--Accel. Beams 17, 110705 (2014).10.1103/physrevstab.17.110705
    [30]
    B. Li, “X-ray photon temporal diagnostics for the European XFEL,” Technical Report No. XFEL.EU TN-2012-002-01, Deutsches Elektronen-Synchrotron DESY, 2012.
    [31]
    Z. Huang and K.-J. Kim, “Review of x-ray free-electron laser theory,” Phys. Rev. Spec. Top.--Accel. Beams 10, 034801 (2007).10.1103/physrevstab.10.034801
    [32]
    K. Zhao, Q. Zhang, M. Chini et al., “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891 (2012).10.1364/ol.37.003891
    [33]
    E. Fermi, “Über die theorie des stosses zwischen atomen und elektrisch geladenen teilchen,” Z. Phys. 29, 35 (1924).10.1007/bf03184853
    [34]
    V. A. Astapenko, ‘Simple formula for photoprocesses in ultrashort electromagnetic field,” Phys. Lett. A, 374, 1585 (2010)10.1016/j.physleta.2010.01.038
    [35]
    R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).10.1119/1.10324
    [36]
    F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, “XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms,” J. Phys. B: At., Mol. Opt. Phys. 50, 235601 (2017).10.1088/1361-6455/aa90cf
    [37]
    B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).10.1006/adnd.1993.1013
    [38]
    Q. Lin, J. Zheng, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97, 253902 (2006).10.1103/physrevlett.97.253902
    [39]
    F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, and V. S. Lisitsa, “Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells,” Matter Radiat. Extremes 5, 064202 (2020).10.1063/5.0022751
    [40]
    T. Katayama, Y. Inubushi, Y. Obara et al., “Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser,” Appl. Phys. Lett. 103, 131105 (2013).10.1063/1.4821108
    [41]
    T. Pfeifer, Y. Jiang, S. Düsterer et al., “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett. 35, 3441 (2010).10.1364/ol.35.003441
    [42]
    https://flash.desy.de/, XUV-FEL FLASH, 2020.
    [43]
    A. Thompson, D. Attwood, E. Gullikson et al., X-Ray Data Booklet (Lawrence Berkely National Laboratory, University of California, 2009).
    [44]
    N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976), p. 16.
    [45]
    F. B. Rosmej, V. S. Lisitsa, and V. A. Astapenko, Plasma Atomic Physics, Springer Series on Atomic, Optical and Plasma Physics (Springer, Heidelberg, 2021).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (187) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return