Citation: | Rosmej F. B., Astapenko V. A., Khramov E. S.. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001. doi: 10.1063/5.0046040 |
[1] |
W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986).
|
[2] |
S. Ichimaru, Statistical Plasmas Physics Vol. II: Condensed Plasmas (Westview Press, Oxford, 2004).
|
[3] |
R. Drake, High-Energy-Density Physics (Springer, Berlin, 2006).
|
[4] |
F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer Science & Business, 2014), Vol. 96.
|
[5] |
M. Harmand, A. Ravasio, S. Mazevet et al., “X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments,” Phys. Rev. B 92, 024108 (2015).10.1103/physrevb.92.024108
|
[6] |
F. Dorchies, F. Festa, V. Recoules et al., “X-ray absorption K-edge as a diagnostic of the electronic temperature in warm dense aluminum,” Phys. Rev. B 92, 085117 (2015).10.1103/physrevb.92.085117
|
[7] |
S. Zhang, S. Zhao, W. Kang et al., “Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an imporved first-principles method,” Phys. Rev. B 93, 115114 (2016).10.1103/physrevb.93.115114
|
[8] |
R. Cheng, Y. Lei, X. Zhou et al., “Warm dense matter research at HIAF,” Matter Radiat. Extremes 3, 85 (2018).10.1016/j.mre.2017.11.001
|
[9] |
R. W. Lee, S. J. Moon, H.-K. Chung et al., “Finite temperature dense matter studies on next generation light sources,” J. Opt. Soc. Am. B 20, 770 (2003).10.1364/josab.20.000770
|
[10] |
D. Riley, “Generation and characterisation of warm dense matter with intense lasers,” Plasma Phys. Controlled Fusion 60, 014033 (2017).10.1088/1361-6587/aa8dd5
|
[11] |
O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Controlled Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
|
[12] |
O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
|
[13] |
M. Smid, O. Renner, A. Colaitis et al., “Characterization of suprathermal electrons inside laser accelerated solid density matter via axially-resolved Kα-emission,” Nat. Commun. 10, 4212 (2019).10.1038/s41467-019-12008-9
|
[14] |
Free Electron Lasers, edited by S. Varro (Intech, Rijeka, 2012).
|
[15] |
https://lcls.slac.stanford.edu, X-ray FEL LCLS, 2020.
|
[16] |
https://www.xfel.eu/, X-ray FEL EU-XFEL, 2020.
|
[17] |
http://xfel.riken.jp/eng/, X-ray FEL SACLA, 2020.
|
[18] |
O. Gorobtsov, U. Lorenz, N. Kabachnik et al., “Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs,” Phys. Rev. E 91, 062712 (2015).10.1103/physreve.91.062712
|
[19] |
A. G. de la Varga, P. Velarde, F. de Gaufridy et al., “Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser,” High Energy Density Phys. 9, 542 (2013).10.1016/j.hedp.2013.05.010
|
[20] |
S. J. Rose, “The effect of a radiation field on exciation and ionisation in non-LTE high energy density plasmas,” High Energy Density Phys. 5, 23 (2009).10.1016/j.hedp.2009.02.002
|
[21] |
H.-K. Chung, M. H. Chen, W. L. Morgan et al., “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001
|
[22] |
C. Gao, J. Zeng, and J. Yuan, “Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations,” High Energy Density Phys. 14, 52 (2015).10.1016/j.hedp.2015.03.003
|
[23] |
S.-K. Son, L. Young, and R. Santra, “Impact of hollow-atom formation on coherent x-ray scattering at high intensity,” Phys. Rev. A 83, 033402 (2011).10.1103/PhysRevA.83.033402
|
[24] |
O. Peyrusse, “Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to x-ray free-electron-laser radiation,” Phys. Rev. E 86, 036403 (2012).10.1103/physreve.86.036403
|
[25] |
E. Schneidmiller and M. Yurkov, “Photon beam properties at the European XFEL,” Technical Report No. XFEL.EU TR-2011-006, Deutsches Elektronen-Synchrotron DESY, 2011.
|
[26] |
T. Tanaka, “Proposal to generate an isolated monocycle x-ray pulse by counteracting the slippage effect in free-electron lasers,” Phys. Rev. Lett. 114, 044801 (2015).10.1103/physrevlett.114.044801
|
[27] |
Y. Kida, R. Kinjo, and T. Tanaka, “Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers,” Appl. Phys. Lett. 109, 151107 (2016).10.1063/1.4964643
|
[28] |
G. Geloni, E. Saldin, L. Samoylova et al., “Coherence properties of the European XFEL,” New J. Phys. 12, 035021 (2010).10.1088/1367-2630/12/3/035021
|
[29] |
S. Roling, H. Zacharias, L. Samoylova et al., “Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers,” Phys. Rev. Spec. Top.--Accel. Beams 17, 110705 (2014).10.1103/physrevstab.17.110705
|
[30] |
B. Li, “X-ray photon temporal diagnostics for the European XFEL,” Technical Report No. XFEL.EU TN-2012-002-01, Deutsches Elektronen-Synchrotron DESY, 2012.
|
[31] |
Z. Huang and K.-J. Kim, “Review of x-ray free-electron laser theory,” Phys. Rev. Spec. Top.--Accel. Beams 10, 034801 (2007).10.1103/physrevstab.10.034801
|
[32] |
K. Zhao, Q. Zhang, M. Chini et al., “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891 (2012).10.1364/ol.37.003891
|
[33] |
E. Fermi, “Über die theorie des stosses zwischen atomen und elektrisch geladenen teilchen,” Z. Phys. 29, 35 (1924).10.1007/bf03184853
|
[34] |
V. A. Astapenko, ‘Simple formula for photoprocesses in ultrashort electromagnetic field,” Phys. Lett. A, 374, 1585 (2010)10.1016/j.physleta.2010.01.038
|
[35] |
R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639–642 (1976).10.1119/1.10324
|
[36] |
F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, “XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms,” J. Phys. B: At., Mol. Opt. Phys. 50, 235601 (2017).10.1088/1361-6455/aa90cf
|
[37] |
B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).10.1006/adnd.1993.1013
|
[38] |
Q. Lin, J. Zheng, and W. Becker, “Subcycle pulsed focused vector beams,” Phys. Rev. Lett. 97, 253902 (2006).10.1103/physrevlett.97.253902
|
[39] |
F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, and V. S. Lisitsa, “Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells,” Matter Radiat. Extremes 5, 064202 (2020).10.1063/5.0022751
|
[40] |
T. Katayama, Y. Inubushi, Y. Obara et al., “Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser,” Appl. Phys. Lett. 103, 131105 (2013).10.1063/1.4821108
|
[41] |
T. Pfeifer, Y. Jiang, S. Düsterer et al., “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett. 35, 3441 (2010).10.1364/ol.35.003441
|
[42] |
https://flash.desy.de/, XUV-FEL FLASH, 2020.
|
[43] |
A. Thompson, D. Attwood, E. Gullikson et al., X-Ray Data Booklet (Lawrence Berkely National Laboratory, University of California, 2009).
|
[44] |
N. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976), p. 16.
|
[45] |
F. B. Rosmej, V. S. Lisitsa, and V. A. Astapenko, Plasma Atomic Physics, Springer Series on Atomic, Optical and Plasma Physics (Springer, Heidelberg, 2021).
|