Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Tian Chao, Yu Minghai, Shan Lianqiang, Wu Fengjuan, Bi Bi, Zhang Qiangqiang, Wu Yuchi, Zhang Tiankui, Zhang Feng, Liu Dongxiao, Wang Weiwu, Yuan Zongqiang, Yang Siqian, Yang Lei, Deng Zhigang, Teng Jian, Zhou Weimin, Zhao Zongqing, Gu Yuqiu, Zhang Baohan. Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9(2): 027602. doi: 10.1063/5.0045112
Citation: Tian Chao, Yu Minghai, Shan Lianqiang, Wu Fengjuan, Bi Bi, Zhang Qiangqiang, Wu Yuchi, Zhang Tiankui, Zhang Feng, Liu Dongxiao, Wang Weiwu, Yuan Zongqiang, Yang Siqian, Yang Lei, Deng Zhigang, Teng Jian, Zhou Weimin, Zhao Zongqing, Gu Yuqiu, Zhang Baohan. Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography[J]. Matter and Radiation at Extremes, 2024, 9(2): 027602. doi: 10.1063/5.0045112

Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography

doi: 10.1063/5.0045112
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zhouwm@caep.cn and yqgu@caep.cn
  • Received Date: 2021-01-23
  • Accepted Date: 2023-11-13
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Cone-inserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on the point-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peak compression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metal microwire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamic simulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, areal densities of the targets were evaluated.
  • loading
  • [1]
    J. H. Nuckolls, L. Wood, A. Thiessen, and G. B. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139 (1972).10.1038/239139a0
    [2]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [3]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, Oxford, 2004).
    [4]
    J. D. Lindl, P. Amendt, R. L. Berger et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [5]
    J. Lindl, O. Landen, J. Edwards, and E. Moses, “Review of the national ignition campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [6]
    S. Jacquemot, “Inertial confinement fusion for energy: Overview of the ongoing experimental, theoretical and numerical studies,” Nucl. Fusion 57, 102024 (2017).10.1088/1741-4326/aa6d2d
    [7]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435 (2016).10.1038/nphys3736
    [8]
    O. A. Hurricane, D. A. Callahan, D. T. Casey et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008
    [9]
    L. Q. Shan, H. B. Cai, W. S. Zhang et al., “Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums,” Phys. Rev. Lett. 120, 195001 (2018).10.1103/physrevlett.120.195001
    [10]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol et al., “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett. 120, 245003 (2018).10.1103/physrevlett.120.245003
    [11]
    V. Gopalaswamy, R. Betti, J. P. Knauer et al., “Tripled yield in direct-drive laser fusion through statistical modelling,” Nature 565, 581 (2019).10.1038/s41586-019-0877-0
    [12]
    H. Abu-Shawareb, R. Acree, P. Adams et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/physrevlett.129.075001
    [13]
    M. Tabak, J. Hammer, M. E. Glinsky et al., “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626 (1994).10.1063/1.870664
    [14]
    H. Azechi, K. Mima, Y. Fujimoto et al., “Plasma physics and laser development for the fast-ignition realization experiment (FIREX) project,” Nucl. Fusion 49, 104024 (2009).10.1088/0029-5515/49/10/104024
    [15]
    W. Theobald, A. A. Solodov, C. Stoeckl et al., “Initial cone-in-shell fast-ignition experiments on OMEGA,” Phys. Plasmas 18, 056305 (2011).10.1063/1.3566082
    [16]
    R. Betti, C. D. Zhou, K. S. Anderson et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [17]
    K. S. Anderson, R. Betti, P. W. McKenty et al., “A polar-drive shock-ignition design for the National Ignition Facility,” Phys. Plasmas 20, 056312 (2013).10.1063/1.4804635
    [18]
    Y. Kitagawa, N. Miyanaga, H. Hama et al., “Double-shell-target implosion by four beams from the GEKKO IV laser system,” Phys. Rev. Lett. 51, 570 (1983).10.1103/physrevlett.51.570
    [19]
    W. S. Varnum, N. D. Delamater, S. C. Evans et al., “Progress toward ignition with noncryogenic double-shell capsules,” Phys. Rev. Lett. 84, 5153 (2000).10.1103/physrevlett.84.5153
    [20]
    P. Amendt, J. D. Colvin, R. E. Tipton et al., “Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis,” Phys. Plasmas 9, 2221 (2002).10.1063/1.1459451
    [21]
    J. L. Milovich, P. Amendt, M. Marinak, and H. Robey, “Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs,” Phys. Plasmas 11, 1552 (2004).10.1063/1.1646161
    [22]
    P. Amendt, H. Robey, H. S. Park et al., “Hohlraum-driven ignitionlike double-shell implosions on the omega laser facility,” Phys. Rev. Lett. 94, 065004 (2005).10.1103/physrevlett.94.065004
    [23]
    G. A. Kyrala, N. D. Delamater, D. C. Wilson et al., “Direct drive double shell target implosion hydrodynamics on OMEGA,” Laser Part. Beams 23, 187 (2005).10.1017/s0263034605050330
    [24]
    G. A. Kyrala, M. A. Gunderson, N. D. Delamater et al., “Detailed diagnosis of a double-shell collision under realistic implosion conditions,” Phys. Plasmas 13, 056306 (2006).10.1063/1.2179047
    [25]
    P. Amendt, C. Cerjan, A. Hamza et al., “Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums,” Phys. Plasmas 14, 056312 (2007).10.1063/1.2716406
    [26]
    H. Robey, P. Amendt, J. Milovich et al., “Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF,” Phys. Rev. Lett. 103, 145003 (2009).10.1103/physrevlett.103.145003
    [27]
    J. W. Li, W. B. Pei, X. T. He et al., “Preheat of radiative shock in double-shell ignition targets,” Phys. Plasmas 20, 082707 (2013).10.1063/1.4818970
    [28]
    B. Scheiner, M. J. Schmitt, S. C. Hsu et al., “First experiments on Revolver shell collisions at the OMEGA laser,” Phys. Plasmas 26, 072707 (2019).10.1063/1.5099975
    [29]
    E. C. Merritt, J. P. Sauppe, E. N. Loomis et al., “Experimental study of energy transfer in double shell implosions,” Phys. Plasmas 26, 052702 (2019).10.1063/1.5086674
    [30]
    M. A. Barrios, S. P. Regan, K. B. Fournier et al., “X-ray area backlighter development at the National Ignition Facility (invited),” Rev. Sci. Instrum. 85, 11D502 (2014).10.1063/1.4891713
    [31]
    K. Molvig, M. J. Schmitt, B. J. Albright et al., “Low fuel convergence path to direct-drive fusion ignition,” Phys. Rev. Lett. 116, 255003 (2016).10.1103/physrevlett.116.255003
    [32]
    J. A. King, K. Akli, B. Zhang et al., “Ti Kα radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging,” Appl. Phys. Lett. 86, 191501 (2005).10.1063/1.1923178
    [33]
    H. Sawada, S. Lee, T. Shiroto et al., “Flash Kα radiography of laser-driven solid sphere compression for fast ignition,” Appl. Phys. Lett. 108, 254101 (2016).10.1063/1.4954383
    [34]
    H. S. Park, B. R. Maddox, E. Giraldez et al., “High-resolution 17–75 keV backlighters for high energy density experiments,” Phys. Plasmas 15, 072705 (2008).10.1063/1.2957918
    [35]
    R. Tommasini, A. MacPhee, D. Hey et al., “Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited),” Rev. Sci. Instrum. 79, 10E901 (2008).10.1063/1.2953593
    [36]
    E. Brambrink, H. G. Wei, B. Barbrel et al., “Direct density measurement of shock-compressed iron using hard x rays generated by a short laser pulse,” Phys. Rev. E. 80, 056407 (2009).10.1103/physreve.80.056407
    [37]
    R. Tommasini, S. P. Hatchett, D. S. Hey et al., “Development of Compton radiography of inertial confinement fusion implosions,” Phys. Plasmas 18, 056309 (2011).10.1063/1.3567499
    [38]
    B. Borm, D. Khaghani, and P. Neumayer, “Properties of laser-driven hard x-ray sources over a wide range of laser intensities,” Phys. Plasmas 26, 023109 (2019).10.1063/1.5081800
    [39]
    R. Tommasini, O. L. Landen, L. Berzak Hopkins et al., “Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions,” Phys. Rev. Lett. 125, 155003 (2020).10.1103/physrevlett.125.155003
    [40]
    C. Tian, M. H. Yu, L. Q. Shan et al., “Radiography of direct drive double shell targets with hard x-rays generated by a short pulse laser,” Nucl. Fusion 59, 046012 (2019).10.1088/1741-4326/aafe30
    [41]
    K. Du, M. F. Liu, T. Wang, X. S. He, Z. W. Wang, and J. Zhang, “Recent progress in ICF target fabrication at RCLF,” Matter Radiat. Extremes 3, 135 (2018).10.1016/j.mre.2017.12.005
    [42]
    Z. C. Li, X. H. Jiang, S. Y. Liu et al., “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [43]
    F. Zhang, J. Li, L. Q. Shan et al., “Measurement of the injecting time of picosecond laser in indirect-drive integrated fast ignition experiments using an x-ray streak camera,” Rev. Sci. Instrum. 90, 033504 (2019).10.1063/1.5050039
    [44]
    C. D. Chen, J. A. King, M. H. Key et al., “A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,” Rev. Sci. Instrum. 79, 10E305 (2008).10.1063/1.2964231
    [45]
    R. Ramis, R. Schmalz, and J. Meyer-ter-Vehn, “MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Commun. 49, 475 (1988).10.1016/0010-4655(88)90008-2
    [46]
    R. Ramis, B. Canaud, M. Temporal, W. J. Garbett, and F. Philippe, “Analysis of three-dimensional effects in laser driven thin-shell capsule implosions,” Matter Radiat. Extremes 4, 055402 (2019).10.1063/1.5095612
    [47]
    S. Agostinelli, J. Allison, K. Amako et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).10.1016/s0168-9002(03)01368-8
    [48]
    J. Allison, K. Amako, J. E. A. Apostolakis et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci. 53, 270 (2006).10.1109/tns.2006.869826
    [49]
    J. Allison, K. Amako, J. Apostolakis et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186 (2016).10.1016/j.nima.2016.06.125
    [50]
    S. Chen, G. Golovin, C. Miller et al., “Shielded radiography with a laser-driven MeV-energy X-ray source,” Nucl. Instrum. Methods Phys. Res., Sect. B 366, 217 (2016).10.1016/j.nimb.2015.11.007
    [51]
    K. Lan, J. Liu, Z. C. Li et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8 (2016).10.1016/j.mre.2016.01.003
    [52]
    Y. Ping, V. A. Smalyuk, P. Amendt et al., “Enhanced energy coupling for indirectly driven inertial confinement fusion,” Nat. Phys. 15, 138 (2019).10.1038/s41567-018-0331-5
    [53]
    L. Jing, S. Jiang, L. Kuang et al., “Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion,” Nucl. Fusion 57, 046020 (2017).10.1088/1741-4326/aa5b43
    [54]
    L. Antonelli, S. Atzeni, A. Schiavi et al., “Laser-driven shock waves studied by x-ray radiography,” Phys. Rev. E. 95, 063205 (2017).10.1103/physreve.95.063205
    [55]
    R. Tommasini, C. Bailey, D. K. Bradley et al., “Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility,” Phys. Plasmas 24, 053104 (2017).10.1063/1.4983137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (50) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return