Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Chen Xiehang, Lou Hongbo, Zeng Zhidan, Cheng Benyuan, Zhang Xin, Liu Ye, Xu Dazhe, Yang Ke, Zeng Qiaoshi. Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure[J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893
Citation: Chen Xiehang, Lou Hongbo, Zeng Zhidan, Cheng Benyuan, Zhang Xin, Liu Ye, Xu Dazhe, Yang Ke, Zeng Qiaoshi. Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure[J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893

Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure

doi: 10.1063/5.0044893
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zengqs@hpstar.ac.cn
  • Received Date: 2021-01-20
  • Accepted Date: 2021-03-24
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • A 4:1 (volume ratio) methanol–ethanol (ME) mixture and silicone oil are two of the most widely used liquid pressure-transmitting media (PTM) in high-pressure studies. Their hydrostatic limits have been extensively studied using various methods; however, the evolution of the atomic structures associated with their emerging nonhydrostaticity remains unclear. Here, we monitor their structures as functions of pressure up to ∼30 GPa at room temperature using in situ high-pressure synchrotron x-ray diffraction (XRD), optical micro-Raman spectroscopy, and ruby fluorescence spectroscopy in a diamond anvil cell. No crystallization is observed for either PTM. The pressure dependence of the principal diffraction peak position and width indicates the existence of a glass transition in the 4:1 ME mixture at ∼12 GPa and in the silicone oil at ∼3 GPa, beyond which a pressure gradient emerges and grows quickly with pressure. There may be another liquid-to-liquid transition in the 4:1 ME mixture at ∼5 GPa and two more glass-to-glass transitions in the silicone oil at ∼10 GPa and ∼16 GPa. By contrast, Raman signals only show peak weakening and broadening for typical structural disordering, and Raman spectroscopy seems to be less sensitive than XRD in catching these structural transitions related to hydrostaticity variations in both PTM. These results uncover rich pressure-induced transitions in the two PTM and clarify their effects on hydrostaticity with direct structural evidence. The high-pressure XRD and Raman data on the two PTM obtained in this work could also be helpful in distinguishing between signals from samples and those from PTM in future high-pressure experiments.
  • loading
  • [1]
    H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/revmodphys.90.015007
    [2]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [3]
    H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59 (2016).10.1016/j.mre.2016.01.005
    [4]
    B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, and H.-k. Mao, “Diamond anvil cell behavior up to 4 Mbar,” Proc. Natl. Acad. Sci. U. S. A. 115, 1713 (2018).10.1073/pnas.1721425115
    [5]
    V. I. Levitas, “High pressure phase transformations revisited,” J. Phys.: Condens. Matter 30, 163001 (2018).10.1088/1361-648x/aab4b0
    [6]
    P. W. Bridgman and E. A. Mason, “Collected experimental papers of P. W. Bridgman,” Am. J. Phys. 33, 516 (1965).10.1119/1.1971829
    [7]
    G. J. Piermarini, S. Block, and J. D. Barnett, “Hydrostatic limits in liquids and solids to 100 kbar,” J. Appl. Phys. 44, 5377 (1973).10.1063/1.1662159
    [8]
    J. M. Besson and J. P. Pinceaux, “Melting of helium at room temperature and high pressure,” Science 206, 1073 (1979).10.1126/science.206.4422.1073
    [9]
    L. W. Finger, R. M. Hazen, G. Zou, H. K. Mao, and P. M. Bell, “Structure and compression of crystalline argon and neon at high pressure and room temperature,” Appl. Phys. Lett. 39, 892 (1981).10.1063/1.92597
    [10]
    R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284 (1972).10.1126/science.176.4032.284
    [11]
    S. Klotz, J.-C. Chervin, P. Munsch, and G. Le Marchand, “Hydrostatic limits of 11 pressure transmitting media,” J. Phys. D: Appl. Phys. 42, 075413 (2009).10.1088/0022-3727/42/7/075413
    [12]
    P. W. Bridgman, “Further rough compressions to 40,000 Kg/Cm: Especially certain liquids,” Am. Acad. Arts Sci. 77, 129 (1949).10.2307/20023533
    [13]
    J. H. Eggert, L. w. Xu, R. z. Che, L. c. Chen, and J. f. Wang, “High pressure refractive index measurements of 4:1 methanol:ethanol,” J. Appl. Phys. 72, 2453 (1992).10.1063/1.351591
    [14]
    X. B. Wang, Z. X. Shen, S. H. Tang, and M. H. Kuok, “Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure,” J. Appl. Phys. 85, 8011 (1999).10.1063/1.370636
    [15]
    R. J. Angel, M. Bujak, J. Zhao, G. D. Gatta, and S. D. Jacobsen, “Effective hydrostatic limits of pressure media for high-pressure crystallographic studies,” J. Appl. Crystallogr. 40, 26 (2007).10.1107/s0021889806045523
    [16]
    D. M. Adams, R. Appleby, and S. K. Sharma, “Spectroscopy at very high pressures. X. Use of ruby R-lines in the estimation of pressure at ambient and at low temperatures,” J. Phys. E: Sci. Instrum. 9, 1140 (1976).10.1088/0022-3735/9/12/034
    [17]
    D. D. Ragan, D. R. Clarke, and D. Schiferl, “Silicone fluid as a high-pressure medium in diamond anvil cells,” Rev. Sci. Instrum. 67, 494 (1996).10.1063/1.1146627
    [18]
    Y. Shen, R. S. Kumar, M. Pravica, and M. F. Nicol, “Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells,” Rev. Sci. Instrum. 75, 4450 (2004).10.1063/1.1786355
    [19]
    W.-P. Hsieh, “Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures,” J. Appl. Phys. 117, 235901 (2015).10.1063/1.4922632
    [20]
    A. S. Kirichenko, A. V. Kornilov, and V. M. Pudalov, “Properties of polyethylsiloxane as a pressure-transmitting medium,” Instrum. Exp. Tech. 48, 813 (2005).10.1007/s10786-005-0144-5
    [21]
    K. Murata, K. Yokogawa, H. Yoshino, S. Klotz, P. Munsch, A. Irizawa, M. Nishiyama, K. Iizuka, T. Nanba, T. Okada, Y. Shiraga, and S. Aoyama, “Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room temperature,” Rev. Sci. Instrum. 79, 085101 (2008).10.1063/1.2964117
    [22]
    O. Sandberg and B. Sundqvist, “Thermal properties of two low viscosity silicon oils as functions of temperature and pressure,” J. Appl. Phys. 53, 8751 (1982).10.1063/1.330475
    [23]
    B. Sundqvist, “Comment on “Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells” [Rev. Sci. Instrum. 75, 4450 (2004)],” Rev. Sci. Instrum. 76, 057101 (2005).10.1063/1.1897637
    [24]
    N. Tateiwa and Y. Haga, “Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell,” Rev. Sci. Instrum. 80, 123901 (2009).10.1063/1.3265992
    [25]
    B. Grocholski and R. Jeanloz, “High-pressure and -temperature viscosity measurements of methanol and 4:1 methanol:ethanol solution,” J. Chem. Phys. 123, 204503 (2005).10.1063/1.2110068
    [26]
    X. Wang, C. Chen, X. Huang, J. Wang, M. Yao, K. Wang, F. Huang, B. Han, Q. Zhou, and F. Li, “Acoustic and elastic properties of silicone oil under high pressure,” RSC Adv. 5, 38056 (2015).10.1039/c5ra03817k
    [27]
    J. C. Chervin, B. Canny, J. M. Besson, and P. Pruzan, “A diamond anvil cell for IR microspectroscopy,” Rev. Sci. Instrum. 66, 2595 (1995).10.1063/1.1145594
    [28]
    J. C. Chervin, B. Canny, and M. Mancinelli, “Ruby-spheres as pressure gauge for optically transparent high pressure cells,” High Pressure Res. 21, 305 (2001).10.1080/08957950108202589
    [29]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673, https://doi.org/10.1029/jb091ib05p04673 (1986).10.1029/jb091ib05p04673
    [30]
    D. Staško, J. Prchal, M. Klicpera, S. Aoki, and K. Murata, “Pressure media for high pressure experiments, Daphne oil 7000 series,” High Pressure Res. 40, 525 (2020).10.1080/08957959.2020.1825706
    [31]
    L. E. Reeves, G. J. Scott, and S. E. Babb, Jr., “Melting curves of pressure‐transmitting fluids,” J. Chem. Phys. 40, 3662 (1964).10.1063/1.1725068
    [32]
    O. F. Yagafarov, Y. Katayama, V. V. Brazhkin, A. G. Lyapin, and H. Saitoh, “Energy dispersive x-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure,” Phys. Rev. B 86, 174103 (2012).10.1103/physrevb.86.174103
    [33]
    P. Chirawatkul, A. Zeidler, P. S. Salmon, S. i. Takeda, Y. Kawakita, T. Usuki, and H. E. Fischer, “Structure of eutectic liquids in the Au–Si, Au–Ge, and Ag–Ge binary systems by neutron diffraction,” Phys. Rev. B 83, 014203 (2011).10.1103/physrevb.83.014203
    [34]
    F. Birch, “Elasticity and constitution of the earth interior,” J. Geophys. Res. 57, 227, https://doi.org/10.1029/jz057i002p00227 (1952).10.1029/jz057i002p00227
    [35]
    S. Casado, H. E. Lorenzana, M. Cáceres, M. Taravillo, and V. G. Baonza, “Direct measurement of the liquid 4:1 methanol–ethanol equation of state up to 5 GPa,” High Pressure Res. 28, 637 (2008).10.1080/08957950802444804
    [36]
    V. Lemos and F. Camargo, “Effects of pressure on the Raman spectra of a 4:1 methanol–ethanol mixture,” J. Raman Spectrosc. 21, 123 (1990).10.1002/jrs.1250210209
    [37]
    A. Serrallach, R. Meyer, and H. H. Günthard, “Methanol and deuterated species: Infrared data, valence force field, rotamers, and conformation,” J. Mol. Spectrosc. 52, 94 (1974).10.1016/0022-2852(74)90008-3
    [38]
    Y. Mikawa, J. W. Brasch, and R. J. Jakobsen, “Polarized infrared spectra of single crystals of ethyl alcohol,” Spectrochim. Acta, Part A 27, 529 (1971).10.1016/0584-8539(71)80257-x
    [39]
    I. Artaki, M. Bradley, T. W. Zerda, and J. Jonas, “NMR and Raman study of the hydrolysis reaction in sol-gel processes,” J. Phys. Chem. 89, 4399 (1985).10.1021/j100266a050
    [40]
    B. W. van de Waal, “On the origin of second-peak splitting in the static structure factor of metallic glasses,” J. Non-Cryst. Solids 189, 118 (1995).10.1016/0022-3093(95)00208-1
    [41]
    Q. S. Zeng, Y. Kono, Y. Lin, Z. D. Zeng, J. Y. Wang, S. V. Sinogeikin, C. Park, Y. Meng, W. G. Yang, H. K. Mao, and W. L. Mao, “Universal fractional noncubic power law for density of metallic glasses,” Phys. Rev. Lett. 112, 185502 (2014).10.1103/physrevlett.112.185502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (173) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return