Citation: | Calestani D., Villani M., Cristoforetti G., Brandi F., Koester P., Labate L., Gizzi L. A.. Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments[J]. Matter and Radiation at Extremes, 2021, 6(4): 046903. doi: 10.1063/5.0044148 |
[1] |
O. N. Rosmej, Z. Samsonova, S. Höfer, D. Kartashov, C. Arda, D. Khaghani, A. Schoenlein, S. Zähter, A. Hoffmann, R. Loetzsch, A. Saevert, I. Uschmann, M. E. Povarnitsyn, N. E. Andreev, L. P. Pugachev, M. C. Kaluza, and C. Spielmann, “Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction,” Phys. Plasmas 25, 083103 (2018).10.1063/1.5027463
|
[2] |
Y. Sentoku, V. Y. Bychenkov, K. Flippo, A. Maksimchuk, K. Mima, G. Mourou, Z. M. Sheng, and D. Umstadter, “High-energy ion generation in interaction of short laser pulse with high-density plasma,” Appl. Phys. B: Lasers Opt. 74, 207 (2002).10.1007/s003400200796
|
[3] |
S. Kumar, K. Gopal, and D. N. Gupta, “Proton acceleration from overdense plasma target interacting with shaped laser pulses in the presence of preplasmas,” Plasma Phys. Controlled Fusion 61, 085001 (2019).10.1088/1361-6587/ab216e
|
[4] |
G. Cristoforetti, A. Anzalone, F. Baffigi, G. Bussolino, G. D’Arrigo, L. Fulgentini, A. Giulietti, P. Koester, L. Labate, S. Tudisco, and L. A. Gizzi, “Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target,” Plasma Phys. Controlled Fusion 56, 095001 (2014).10.1088/0741-3335/56/9/095001
|
[5] |
M. Nishiuchi, N. P. Dover, M. Hata, H. Sakaki, Ko. Kondo, H. F. Lowe, T. Miyahara, H. Kiriyama, J. K. Koga, N. Iwata, M. A. Alkhimova, A. S. Pirozhkov, A. Ya. Faenov, T. A. Pikuz, A. Sagisaka, Y. Watanabe, M. Kando, K. Kondo, E. J. Ditter, O. C. Ettlinger, G. S. Hicks, Z. Najmudin, T. Ziegler, K. Zeil, U. Schramm, and Y. Sentoku, “Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states,” Phys. Rev. Res. 2, 033081 (2020).10.1103/physrevresearch.2.033081
|
[6] |
G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, R. Russo, D. Terzani, P. Tomassini, and L. A. Gizzi, “Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets,” Plasma Phys. Controlled Fusion 62, 114001 (2020).10.1088/1361-6587/abb5e3
|
[7] |
M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang, and J. J. Rocca, “Relativistic plasma nanophotonics for ultrahigh energy density physics,” Nat. Photonics 7, 796 (2013).10.1038/nphoton.2013.217
|
[8] |
C. Bargsten, R. Hollinger, M. G. Capeluto, V. Kaymak, A. Pukhov, S. Wang, A. Rockwood, Y. Wang, D. Keiss, R. Tommasini, R. London, J. Park, M. Busquet, M. Klapisch, V. N. Shlyaptsev, and J. J. Rocca, “Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures,” Sci. Adv. 3, e1601558 (2017).10.1126/sciadv.1601558
|
[9] |
R. Hollinger, C. Bargsten, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, M. G. Capeluto, S. Wang, A. Rockwood, Y. Wang, A. Townsend, A. Prieto, P. Stockton, A. Curtis, and J. J. Rocca, “Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime,” Optica 4, 1344 (2017).10.1364/optica.4.001344
|
[10] |
T. Ceccotti, V. Floquet, A. Sgattoni, A. Bigongiari, O. Klimo, M. Raynaud, C. Riconda, A. Heron, F. Baffigi, L. Labate, L. A. Gizzi, L. Vassura, J. Fuchs, M. Passoni, M. Květon, F. Novotny, M. Possolt, J. Prokůpek, J. Proška, J. Pšikal, L. Štolcoá, A. Velyhan, M. Bougeard, P. D’Oliveira, O. Tcherbakoff, F. Réau, P. Martin, and A. Macchi, “Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets,” Phys. Rev. Lett. 111, 185001 (2013).10.1103/physrevlett.111.185001
|
[11] |
L. A. Gizzi, G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, R. Russo, D. Terzani, and P. Tomassini, “Intense proton acceleration in ultrarelativistic interaction with nanochannels,” Phys. Rev. Res. 2, 033451 (2020).10.1103/physrevresearch.2.033451
|
[12] |
A. Macchi, “Surface plasmons in superintense laser-solid interactions,” Phys. Plasmas 25, 031906 (2018).10.1063/1.5013321
|
[13] |
Y. Ji, G. Jiang, W. Wu, C. Wang, Y. Gu, and Y. Tang, “Efficient generation and transportation of energetic electrons in a carbon nanotube array target,” Appl. Phys. Lett. 96, 041504 (2010).10.1063/1.3298016
|
[14] |
J. Snyder, L. L. Ji, K. M. George, C. Willis, G. E. Cochran, R. L. Daskalova, A. Handler, T. Rubin, P. L. Poole, D. Nasir, A. Zingale, E. Chowdhury, B. F. Shen, and D. W. Schumacher, “Relativistic laser driven electron accelerator using micro-channel plasma targets,” Phys. Plasmas 26, 033110 (2019).10.1063/1.5087409
|
[15] |
A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang, M. G. Capeluto, A. Rockwood, A. Curtis, S. Kasdorf, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, and J. J. Rocca, “Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities,” Plasma Phys. Controlled Fusion 62, 014013 (2020).10.1088/1361-6587/ab4d0c
|
[16] |
D. B. Zou, D. Y. Yu, X. R. Jiang, M. Y. Yu, Z. Y. Chen, Z. G. Deng, T. P. Yu, Y. Yin, F. Q. Shao, H. B. Zhuo, C. T. Zhou, and S. C. Ruan, “Enhancement of target normal sheath acceleration in laser multi-channel target interaction,” Phys. Plasmas 26, 123105 (2019).10.1063/1.5096902
|
[17] |
G. Cristoforetti, P. Londrillo, P. K. Singh, F. Baffigi, G. D’Arrigo, A. D. Lad, R. G. Milazzo, A. Adak, M. Shaikh, D. Sarkar, G. Chatterjee, J. Jha, M. Krishnamurthy, G. R. Kumar, and L. A. Gizzi, “Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets,” Sci. Rep. 7, 1479 (2017).10.1038/s41598-017-01677-5
|
[18] |
H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
|
[19] |
E. d’Humieres, A. Brantov, V. Yu. Bychenkov, and V. T. Tikhonchuk, “Optimization of laser-target interaction for proton acceleration,” Phys. Plasmas 20, 023103 (2013).10.1063/1.4791655
|
[20] |
N. P. Dover, M. Nishiuchi, H. Sakaki, Ko. Kondo, M. A. Alkhimova, A. Ya. Faenov, M. Hata, N. Iwata, H. Kiriyama, J. K. Koga, T. Miyahara, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, Y. Sentoku, Y. Watanabe, M. Kando, and K. Kondo, “Effect of small focus on electron heating and proton acceleration in ultrarelativistic laser-solid interactions,” Phys. Rev. Lett. 124, 084802 (2020).10.1103/physrevlett.124.084802
|
[21] |
L. A. Gizzi, D. Giove, C. Altana, F. Brandi, P. Cirrone, G. Cristoforetti et al., “A new line for laser-driven light ions acceleration and related TNSA studies,” Appl. Sci. 7, 984 (2017).10.3390/app7100984
|
[22] |
L. A. Gizzi, F. Baffigi, F. Brandi, G. Bussolino, G. Cristoforetti, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, and P. Tomassini, “Light ion accelerating line (L3IA): Test experiment at ILIL-PW,” Nucl. Instrum. Methods Phys. Res., Sect. A 909, 160 (2018).10.1016/j.nima.2018.03.016
|
[23] |
Y. F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process,” Appl. Surf. Sci. 22-23, 1061 (1985).10.1016/0378-5963(85)90241-7
|
[24] |
A. E. Jimenez-Gonzailez and P. K. Nair, “Photosensitive ZnO thin films prepared by the chemical deposition method SILAR,” Semicond. Sci. Technol. 10, 1277 (1995).10.1088/0268-1242/10/9/013
|
[25] |
D. Calestani, F. Pattini, F. Bissoli, E. Gilioli, M. Villani, and A. Zappettini, “Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques,” Nanotechnology 23, 194008 (2012).10.1088/0957-4484/23/19/194008
|
[26] |
M. Zha, D. Calestani, A. Zappettini, R. Mosca, M. Mazzera, L. Lazzarini, and L. Zanotti, “Large-area self-catalysed and selective growth of ZnO nanowires,” Nanotechnology 19, 325603 (2008).10.1088/0957-4484/19/32/325603
|
[27] |
D. Calestani, M. Culiolo, M. Villani, D. Delmonte, M. Solzi, T.-Y. Kim, S.-W. Kim, L. Marchini, and A. Zappettini, “Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials,” Nanotechnology 29, 335501 (2018).10.1088/1361-6528/aac850
|
[28] |
M. Villani, D. Delmonte, M. Culiolo, D. Calestani, N. Coppedè, M. Solzi, L. Marchini, R. Bercella, and A. Zappettini, “Turning carbon fiber into a stress-sensitive composite material,” J. Mater. Chem. A 4, 10486 (2016).10.1039/c6ta02646j
|
[29] |
R. Parize, J. D. Garnier, E. Appert, O. Chaix-Pluchery, and V. Consonni, “Effects of polyethylenimine and its molecular weight on the chemical bath deposition of ZnO nanowires,” ACS Omega 3, 12457 (2018).10.1021/acsomega.8b01641
|
[30] |
C. Benedetti, A. Sgattoni, G. Turchetti, and P. Londrillo, “ALaDyn: A high-accuracy PIC code for the Maxwell–Vlasov equations,” IEEE Trans. Plasma Sci. 36, 1790 (2008).10.1109/tps.2008.927143
|
[31] |
D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee, M. Shaikh, A. D. Lad, P. Londrillo, G. D’Arrigo, J. Jha, M. Krishnamurthy, L. A. Gizzi, and G. Ravindra Kumar, “Silicon nanowire based high brightness, pulse relativistic electron source,” APL Photonics 2, 066105 (2017).10.1063/1.4984906
|