Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Calestani D., Villani M., Cristoforetti G., Brandi F., Koester P., Labate L., Gizzi L. A.. Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments[J]. Matter and Radiation at Extremes, 2021, 6(4): 046903. doi: 10.1063/5.0044148
Citation: Calestani D., Villani M., Cristoforetti G., Brandi F., Koester P., Labate L., Gizzi L. A.. Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments[J]. Matter and Radiation at Extremes, 2021, 6(4): 046903. doi: 10.1063/5.0044148

Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments

doi: 10.1063/5.0044148
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: marco.villani@imem.cnr.it and gabriele.cristoforetti@cnr.it; a)Authors to whom correspondence should be addressed: marco.villani@imem.cnr.it and gabriele.cristoforetti@cnr.it
  • Received Date: 2021-01-14
  • Accepted Date: 2021-05-06
  • Available Online: 2021-07-01
  • Publish Date: 2021-07-15
  • The coupling of ultra-intense, ultra-short laser pulses with solid targets is heavily dependent on the properties of the vacuum–solid interface and is usually quite low. However, laser absorption can be enhanced via micro or nanopatterning of the target surface. Depending on the laser features and target geometry, conditions can be optimized for the generation of hot dense matter, which can be used to produce high-brightness radiation sources or even to accelerate particles to relativistic energies. In this context, ZnO nanowires were grown on metallic, thin-foil targets. The use of a thin-foil substrate was dictated by the need to achieve proton acceleration via target normal sheath acceleration at the rear side. The chemical process parameters were studied in-depth to provide control over the nanowire size, shape, and distribution. Moreover, the manufacturing process was optimized to provide accurate reproducibility of key parameters in the widest possible range and good homogeneity across the entire foil area.
  • loading
  • [1]
    O. N. Rosmej, Z. Samsonova, S. Höfer, D. Kartashov, C. Arda, D. Khaghani, A. Schoenlein, S. Zähter, A. Hoffmann, R. Loetzsch, A. Saevert, I. Uschmann, M. E. Povarnitsyn, N. E. Andreev, L. P. Pugachev, M. C. Kaluza, and C. Spielmann, “Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction,” Phys. Plasmas 25, 083103 (2018).10.1063/1.5027463
    [2]
    Y. Sentoku, V. Y. Bychenkov, K. Flippo, A. Maksimchuk, K. Mima, G. Mourou, Z. M. Sheng, and D. Umstadter, “High-energy ion generation in interaction of short laser pulse with high-density plasma,” Appl. Phys. B: Lasers Opt. 74, 207 (2002).10.1007/s003400200796
    [3]
    S. Kumar, K. Gopal, and D. N. Gupta, “Proton acceleration from overdense plasma target interacting with shaped laser pulses in the presence of preplasmas,” Plasma Phys. Controlled Fusion 61, 085001 (2019).10.1088/1361-6587/ab216e
    [4]
    G. Cristoforetti, A. Anzalone, F. Baffigi, G. Bussolino, G. D’Arrigo, L. Fulgentini, A. Giulietti, P. Koester, L. Labate, S. Tudisco, and L. A. Gizzi, “Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target,” Plasma Phys. Controlled Fusion 56, 095001 (2014).10.1088/0741-3335/56/9/095001
    [5]
    M. Nishiuchi, N. P. Dover, M. Hata, H. Sakaki, Ko. Kondo, H. F. Lowe, T. Miyahara, H. Kiriyama, J. K. Koga, N. Iwata, M. A. Alkhimova, A. S. Pirozhkov, A. Ya. Faenov, T. A. Pikuz, A. Sagisaka, Y. Watanabe, M. Kando, K. Kondo, E. J. Ditter, O. C. Ettlinger, G. S. Hicks, Z. Najmudin, T. Ziegler, K. Zeil, U. Schramm, and Y. Sentoku, “Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states,” Phys. Rev. Res. 2, 033081 (2020).10.1103/physrevresearch.2.033081
    [6]
    G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, R. Russo, D. Terzani, P. Tomassini, and L. A. Gizzi, “Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets,” Plasma Phys. Controlled Fusion 62, 114001 (2020).10.1088/1361-6587/abb5e3
    [7]
    M. A. Purvis, V. N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B. M. Luther, L. Yin, S. Wang, and J. J. Rocca, “Relativistic plasma nanophotonics for ultrahigh energy density physics,” Nat. Photonics 7, 796 (2013).10.1038/nphoton.2013.217
    [8]
    C. Bargsten, R. Hollinger, M. G. Capeluto, V. Kaymak, A. Pukhov, S. Wang, A. Rockwood, Y. Wang, D. Keiss, R. Tommasini, R. London, J. Park, M. Busquet, M. Klapisch, V. N. Shlyaptsev, and J. J. Rocca, “Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures,” Sci. Adv. 3, e1601558 (2017).10.1126/sciadv.1601558
    [9]
    R. Hollinger, C. Bargsten, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, M. G. Capeluto, S. Wang, A. Rockwood, Y. Wang, A. Townsend, A. Prieto, P. Stockton, A. Curtis, and J. J. Rocca, “Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime,” Optica 4, 1344 (2017).10.1364/optica.4.001344
    [10]
    T. Ceccotti, V. Floquet, A. Sgattoni, A. Bigongiari, O. Klimo, M. Raynaud, C. Riconda, A. Heron, F. Baffigi, L. Labate, L. A. Gizzi, L. Vassura, J. Fuchs, M. Passoni, M. Květon, F. Novotny, M. Possolt, J. Prokůpek, J. Proška, J. Pšikal, L. Štolcoá, A. Velyhan, M. Bougeard, P. D’Oliveira, O. Tcherbakoff, F. Réau, P. Martin, and A. Macchi, “Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets,” Phys. Rev. Lett. 111, 185001 (2013).10.1103/physrevlett.111.185001
    [11]
    L. A. Gizzi, G. Cristoforetti, F. Baffigi, F. Brandi, G. D’Arrigo, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, R. Russo, D. Terzani, and P. Tomassini, “Intense proton acceleration in ultrarelativistic interaction with nanochannels,” Phys. Rev. Res. 2, 033451 (2020).10.1103/physrevresearch.2.033451
    [12]
    A. Macchi, “Surface plasmons in superintense laser-solid interactions,” Phys. Plasmas 25, 031906 (2018).10.1063/1.5013321
    [13]
    Y. Ji, G. Jiang, W. Wu, C. Wang, Y. Gu, and Y. Tang, “Efficient generation and transportation of energetic electrons in a carbon nanotube array target,” Appl. Phys. Lett. 96, 041504 (2010).10.1063/1.3298016
    [14]
    J. Snyder, L. L. Ji, K. M. George, C. Willis, G. E. Cochran, R. L. Daskalova, A. Handler, T. Rubin, P. L. Poole, D. Nasir, A. Zingale, E. Chowdhury, B. F. Shen, and D. W. Schumacher, “Relativistic laser driven electron accelerator using micro-channel plasma targets,” Phys. Plasmas 26, 033110 (2019).10.1063/1.5087409
    [15]
    A. Moreau, R. Hollinger, C. Calvi, S. Wang, Y. Wang, M. G. Capeluto, A. Rockwood, A. Curtis, S. Kasdorf, V. N. Shlyaptsev, V. Kaymak, A. Pukhov, and J. J. Rocca, “Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities,” Plasma Phys. Controlled Fusion 62, 014013 (2020).10.1088/1361-6587/ab4d0c
    [16]
    D. B. Zou, D. Y. Yu, X. R. Jiang, M. Y. Yu, Z. Y. Chen, Z. G. Deng, T. P. Yu, Y. Yin, F. Q. Shao, H. B. Zhuo, C. T. Zhou, and S. C. Ruan, “Enhancement of target normal sheath acceleration in laser multi-channel target interaction,” Phys. Plasmas 26, 123105 (2019).10.1063/1.5096902
    [17]
    G. Cristoforetti, P. Londrillo, P. K. Singh, F. Baffigi, G. D’Arrigo, A. D. Lad, R. G. Milazzo, A. Adak, M. Shaikh, D. Sarkar, G. Chatterjee, J. Jha, M. Krishnamurthy, G. R. Kumar, and L. A. Gizzi, “Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets,” Sci. Rep. 7, 1479 (2017).10.1038/s41598-017-01677-5
    [18]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
    [19]
    E. d’Humieres, A. Brantov, V. Yu. Bychenkov, and V. T. Tikhonchuk, “Optimization of laser-target interaction for proton acceleration,” Phys. Plasmas 20, 023103 (2013).10.1063/1.4791655
    [20]
    N. P. Dover, M. Nishiuchi, H. Sakaki, Ko. Kondo, M. A. Alkhimova, A. Ya. Faenov, M. Hata, N. Iwata, H. Kiriyama, J. K. Koga, T. Miyahara, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, Y. Sentoku, Y. Watanabe, M. Kando, and K. Kondo, “Effect of small focus on electron heating and proton acceleration in ultrarelativistic laser-solid interactions,” Phys. Rev. Lett. 124, 084802 (2020).10.1103/physrevlett.124.084802
    [21]
    L. A. Gizzi, D. Giove, C. Altana, F. Brandi, P. Cirrone, G. Cristoforetti et al., “A new line for laser-driven light ions acceleration and related TNSA studies,” Appl. Sci. 7, 984 (2017).10.3390/app7100984
    [22]
    L. A. Gizzi, F. Baffigi, F. Brandi, G. Bussolino, G. Cristoforetti, A. Fazzi, L. Fulgentini, D. Giove, P. Koester, L. Labate, G. Maero, D. Palla, M. Romé, and P. Tomassini, “Light ion accelerating line (L3IA): Test experiment at ILIL-PW,” Nucl. Instrum. Methods Phys. Res., Sect. A 909, 160 (2018).10.1016/j.nima.2018.03.016
    [23]
    Y. F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process,” Appl. Surf. Sci. 22-23, 1061 (1985).10.1016/0378-5963(85)90241-7
    [24]
    A. E. Jimenez-Gonzailez and P. K. Nair, “Photosensitive ZnO thin films prepared by the chemical deposition method SILAR,” Semicond. Sci. Technol. 10, 1277 (1995).10.1088/0268-1242/10/9/013
    [25]
    D. Calestani, F. Pattini, F. Bissoli, E. Gilioli, M. Villani, and A. Zappettini, “Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques,” Nanotechnology 23, 194008 (2012).10.1088/0957-4484/23/19/194008
    [26]
    M. Zha, D. Calestani, A. Zappettini, R. Mosca, M. Mazzera, L. Lazzarini, and L. Zanotti, “Large-area self-catalysed and selective growth of ZnO nanowires,” Nanotechnology 19, 325603 (2008).10.1088/0957-4484/19/32/325603
    [27]
    D. Calestani, M. Culiolo, M. Villani, D. Delmonte, M. Solzi, T.-Y. Kim, S.-W. Kim, L. Marchini, and A. Zappettini, “Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials,” Nanotechnology 29, 335501 (2018).10.1088/1361-6528/aac850
    [28]
    M. Villani, D. Delmonte, M. Culiolo, D. Calestani, N. Coppedè, M. Solzi, L. Marchini, R. Bercella, and A. Zappettini, “Turning carbon fiber into a stress-sensitive composite material,” J. Mater. Chem. A 4, 10486 (2016).10.1039/c6ta02646j
    [29]
    R. Parize, J. D. Garnier, E. Appert, O. Chaix-Pluchery, and V. Consonni, “Effects of polyethylenimine and its molecular weight on the chemical bath deposition of ZnO nanowires,” ACS Omega 3, 12457 (2018).10.1021/acsomega.8b01641
    [30]
    C. Benedetti, A. Sgattoni, G. Turchetti, and P. Londrillo, “ALaDyn: A high-accuracy PIC code for the Maxwell–Vlasov equations,” IEEE Trans. Plasma Sci. 36, 1790 (2008).10.1109/tps.2008.927143
    [31]
    D. Sarkar, P. K. Singh, G. Cristoforetti, A. Adak, G. Chatterjee, M. Shaikh, A. D. Lad, P. Londrillo, G. D’Arrigo, J. Jha, M. Krishnamurthy, L. A. Gizzi, and G. Ravindra Kumar, “Silicon nanowire based high brightness, pulse relativistic electron source,” APL Photonics 2, 066105 (2017).10.1063/1.4984906
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (243) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return