Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Meng Guangwei, She Jun, Song Tianming, Yang Jiamin, Wang Min. Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility[J]. Matter and Radiation at Extremes, 2022, 7(2): 025901. doi: 10.1063/5.0043745
Citation: Meng Guangwei, She Jun, Song Tianming, Yang Jiamin, Wang Min. Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility[J]. Matter and Radiation at Extremes, 2022, 7(2): 025901. doi: 10.1063/5.0043745

Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility

doi: 10.1063/5.0043745
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: meng_guangwei@iapcm.ac.cn and she_jun@iapcm.ac.cn; a)Authors to whom correspondence should be addressed: meng_guangwei@iapcm.ac.cn and she_jun@iapcm.ac.cn
  • Received Date: 2021-01-11
  • Accepted Date: 2021-12-20
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • Experiments exploring the propagation of heat waves within cylindrical CH foams were performed on the Shenguang-III prototype laser facility in 2012. In this paper, the radiation fluxes out of CH foam cylinders at different angles are analyzed theoretically using the two-dimensional radiation hydrodynamics code LARED-R. Owing to the difficulty in validating opacity and equation of state (EOS) data for high-Z plasmas, and to uncertainties in the measured radiation temperature Tr and the original foam density ρ0, multipliers are introduced to adjust the Au material parameters, Tr, and ρ0 in our simulations to better explain the measurements. The dependences of the peak radiation flux Fmax and the breakout time of the heat wave thalf (defined as the time corresponding to the radiation flux at half-maximum) on the radiation source, opacity, EOS, and ρ0 scaling factors (ηsrc, ηop, ηeos, and ηρ) are investigated via numerical simulations combined with fitting. Then, with the uncertainties in the measured Tr and ρ0 fixed at 3.6% and 3.1%, respectively, experimental data are exploited as fiducial values to determine the ranges of ηop and ηeos. It is found that the ranges of ηop and ηeos fixed by this experiment overlap partially with those found in our previous work [Meng et al., Phys. Plasmas 20 , 092704 (2013)]. Based on the scaled opacity and EOS parameters, the values of Fmax and thalf obtained via simulations are in good agreement with the measurements, with maximum errors ∼9.5% and within 100 ps, respectively.
  • loading
  • [1]
    N. B. Meezan, M. J. Edwards, O. A. Hurricane, P. K. Patel, D. A. Callahan, W. W. Hsing, R. P. J. Town, F. Albert, P. A. Amendt, L. F. Berzak Hopkins, D. K. Bradley, D. T. Casey, D. S. Clark, E. L. Dewald, T. R. Dittrich, L. Divol, T. Döppner, J. E. Field, S. W. Haan, G. N. Hall, B. A. Hammel, D. E. Hinkel, D. D. Ho, M. Hohenberger, N. Izumi, O. S. Jones, S. F. Khan, J. L. Kline, A. L. Kritcher, O. L. Landen, S. LePape, T. Ma, A. J. MacKinnon, A. G. MacPhee, L. Masse, J. L. Milovich, A. Nikroo, A. Pak, H.-S. Park, J. L. Peterson, H. F. Robey, J. S. Ross, J. D. Salmonson, V. A. Smalyuk, B. K. Spears, M. Stadermann, L. J. Suter, C. A. Thomas, R. Tommasini, D. P. Turnbull, and C. R. Weber, “Indirect drive ignition at the National Ignition Facility,” Plasma Phys. Controlled Fusion 59, 014021 (2017).10.1088/0741-3335/59/1/014021
    [2]
    R. E. Marshak, “Effect of radiation on shock wave behavior,” Phys. Fluids 1, 24 (1958).10.1063/1.1724332
    [3]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [4]
    A. B. R. Cooper, M. B. Schneider, S. A. MacLaren, A. S. Moore, P. E. Young, W. W. Hsing, R. Seugling, M. E. Foord, J. D. Sain, M. J. May, R. E. Marrs, B. R. Maddox, K. Lu, K. Dodson, V. Smalyuk, P. Graham, J. M. Foster, C. A. Back, and J. F. Hund, “Streaked radiography of an irradiated foam sample on the National Ignition Facility,” Phys. Plasmas 20, 033301 (2013).10.1063/1.4793727
    [5]
    A. S. Moore, A. B. R. Cooper, M. B. Schneider, S. MacLaren, P. Graham, K. Lu, R. Seugling, J. Satcher, J. Klingmann, A. J. Comley, R. Marrs, M. May, K. Widmann, G. Glendinning, J. Castor, J. Sain, C. A. Back, J. Hund, K. Baker, W. W. Hsing, J. Foster, B. Young, and P. Young, “Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility,” Phys. Plasmas 21, 063303 (2014).10.1063/1.4880558
    [6]
    D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Academic, New York, 1966).
    [7]
    G. C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon Press, London, 1973).
    [8]
    Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, New York, 1984).
    [9]
    J. Li, J. Li, and G. Meng, “Reversal of Hugoniot Iocus for strong shocks due to radiation,” Phys. Plasmas 18, 042301 (2011).10.1063/1.3574517
    [10]
    A. Mizuta, J. O. Kane, M. W. Pound, B. A. Remington, D. D. Ryutov, and H. Takabe, “Formation of pillars at the boundaries between H II regions and molecular clouds,” Astrophys. J. 647, 1151 (2006).10.1086/505458
    [11]
    J. H. Hammer and M. D. Rosen, “A consistent approach to solving the radiation diffusion equation,” Phys. Plasmas 10, 1829 (2003).10.1063/1.1564599
    [12]
    G. Meng, J. Li, J. Yang, T. Zhu, S. Zou, M. Wang, and W. Zhang, “A simple method to verify the opacity and equation of state of high-Z plasmas,” Phys. Plasmas 20, 092704 (2013).10.1063/1.4821836
    [13]
    O. A. Hurricane and J. H. Hammer, “Bent Marshak waves,” Phys. Plasmas 13, 113303 (2006).10.1063/1.2388268
    [14]
    G. Meng, J. Wang, X. Wang, J. Li, and W. Zhang, “Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas,” Matter Radiat. Extremes 1, 249 (2016).10.1016/j.mre.2016.09.001
    [15]
    T. Shussman and S. I. Heizler, “Full self-similar solutions of the subsonic radiative heat equations,” Phys. Plasmas 22, 082109 (2015).10.1063/1.4927756
    [16]
    C. A. Back, J. D. Bauer, J. H. Hammer, B. F. Lasinski, R. E. Turner, P. W. Rambo, O. L. Landen, L. J. Suter, M. D. Rosen, and W. W. Hsing, “Diffusive, supersonic x-ray transport in radiatively heated foam cylinders,” Phys. Plasmas 7, 2126 (2000).10.1063/1.874057
    [17]
    T. M. Guymer, A. S. Moore, J. Morton, J. L. Kline, S. Allan, N. Bazin, J. Benstead, C. Bentley, A. J. Comley, J. Cowan, K. Flippo, W. Garbett, C. Hamilton, N. E. Lanier, K. Mussack, K. Obrey, L. Reed, D. W. Schmidt, R. M. Stevenson, J. M. Taccetti, and J. Workman, “Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility,” Phys. Plasmas 22, 043303 (2015).10.1063/1.4919025
    [18]
    W. Shang, T. Zhu, T. Song, W. Zhang, Y. Zhao, G. Xiong, J. Zhang, and J. Yang, “Study of x-ray radiant characteristics and thermal radiation redistribution in CH foam filling cylindrical cavities,” Phys. Plasmas 18, 042705 (2011).10.1063/1.3586625
    [19]
    J. Yang, G. Meng, T. Zhu, J. Zhang, J. Li, X. He, R. Yi, Y. Xu, Z. Hu, Y. Ding, S. Liu, and Y. Ding, “Experimental study of the hydrodynamic trajectory of an x-ray-heated gold plasmas,” Phys. Plasmas 17, 062702 (2010).10.1063/1.3443127
    [20]
    O. Willi, L. Barringer, C. Vickers, and D. Hoarty, “Study of super- and subsonic ionization fronts in low-density, soft X-ray-irradiated foam targets,” Astrophys. J., Suppl. Ser. 127, 527 (2000).10.1086/313330
    [21]
    [22]
    [23]
    Z. Li, X. Jiang, S. Liu, T. Huang, J. Zheng, J. Yang, S. Li, L. Guo, X. Zhao, H. Du, T. Song, R. Yi, Y. Liu, S. Jiang, and Y. Ding, “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [24]
    D. Yang, Z. Li, L. Guo, S. Li, R. Yi, T. Song, H. Zhang, Z. Wang, X. Jiang, S. Jiang, and Y. Ding, “The influence of laser clipped by the laser entrance hole on hohlraum radiation measurement on Shenguang-III prototype,” Rev. Sci. Instrum. 85, 033504 (2014).10.1063/1.4867741
    [25]
    T. Feng, “A numerical method for solving radiation transport equation on Lagrangian mesh,” Chin. J. Comput. Phys. 21, 427 (2004).
    [26]
    Y. Rong, H. Xudeng, and L. Jinghong, “A two-dimensional cylindric symmetric radiative transfer benchmark model and code tests,” Chin. J. Comput. Phys. 27, 533 (2010).
    [27]
    F. J. D. Serduke, E. Minguez, S. J. Davidson, and C. A. Iglesias, “WorkOp-IV summary: Lessons from iron opacities,” J. Quant. Spectrosc. Radiat. Transfer 65, 527 (2000).10.1016/s0022-4073(99)00094-1
    [28]
    R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dens matter,” Phys. Fluids 31, 3059 (1988).10.1063/1.866963
    [29]
    The Compilation Group of Handbook of Mathematics, Handbook of Mathematics (Higher Education Press, Beijing, 1979), pp. 865–866.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (97) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return