Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Chen Z., Na X., Curry C. B., Liang S., French M., Descamps A., DePonte D. P., Koralek J. D., Kim J. B., Lebovitz S., Nakatsutsumi M., Ofori-Okai B. K., Redmer R., Roedel C., Schörner M., Skruszewicz S., Sperling P., Toleikis S., Mo M. Z., Glenzer S. H.. Observation of a highly conductive warm dense state of water with ultrafast pump–probe free-electron-laser measurements[J]. Matter and Radiation at Extremes, 2021, 6(5): 054401. doi: 10.1063/5.0043726
Citation: Chen Z., Na X., Curry C. B., Liang S., French M., Descamps A., DePonte D. P., Koralek J. D., Kim J. B., Lebovitz S., Nakatsutsumi M., Ofori-Okai B. K., Redmer R., Roedel C., Schörner M., Skruszewicz S., Sperling P., Toleikis S., Mo M. Z., Glenzer S. H.. Observation of a highly conductive warm dense state of water with ultrafast pump–probe free-electron-laser measurements[J]. Matter and Radiation at Extremes, 2021, 6(5): 054401. doi: 10.1063/5.0043726

Observation of a highly conductive warm dense state of water with ultrafast pump–probe free-electron-laser measurements

doi: 10.1063/5.0043726
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: zchen@slac.stanford.edu and glenzer@slac.stanford.edu; a)Authors to whom correspondence should be addressed: zchen@slac.stanford.edu and glenzer@slac.stanford.edu
  • Received Date: 2021-01-11
  • Accepted Date: 2021-06-23
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • The electrical conductivity of water under extreme temperatures and densities plays a central role in modeling planetary magnetic fields. Experimental data are vital to test theories of high-energy-density water and assess the possible development and presence of extraterrestrial life. These states are also important in biology and chemistry studies when specimens in water are confined and excited using ultrafast optical or free-electron lasers (FELs). Here we utilize femtosecond optical lasers to measure the transient reflection and transmission of ultrathin water sheet samples uniformly heated by a 13.6 nm FEL approaching a highly conducting state at electron temperatures exceeding 20 000 K. The experiment probes the trajectory of water through the high-energy-density phase space and provides insights into changes in the index of refraction, charge carrier densities, and AC electrical conductivity at optical frequencies. At excitation energy densities exceeding 10 MJ/kg, the index of refraction falls to n = 0.7, and the thermally excited free-carrier density reaches ne = 5 × 1027 m−3, which is over an order of magnitude higher than that of the electron carriers produced by direct photoionization. Significant specular reflection is observed owing to critical electron density shielding of electromagnetic waves. The measured optical conductivity reaches 2 × 104 S/m, a value that is one to two orders of magnitude lower than those of simple metals in a liquid state. At electron temperatures below 15 000 K, the experimental results agree well with the theoretical calculations using density-functional theory/molecular-dynamics simulations. With increasing temperature, the electron density increases and the system approaches a Fermi distribution. In this regime, the conductivities agree better with predictions from the Ziman theory of liquid metals.
  • loading
  • [1]
    J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinger, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, “Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature,” Nature 510, 381 (2014).10.1038/nature13266
    [2]
    K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama, and A. Nilsson, “Maxima in the thermodynamic response and correlation functions of deeply supercooled water,” Science 358, 1589 (2017).10.1126/science.aap8269
    [3]
    K. H. Kim, K. Amann-Winkel, N. Giovambattista, A. Späh, F. Perakis, H. Pathak, M. L. Parada, C. Yang, D. Mariedahl, T. Eklund, T. J. Lane, S. You, S. Jeong, M. Weston, J. H. Lee, I. Eom, M. Kim, J. Park, S. H. Chun, P. H. Poole, and A. Nilsson, “Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure,” Science 370, 978 (2020).10.1126/science.abb9385
    [4]
    F. Perakis, L. De Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kühne, R. Torre, M. Bonn, and Y. Nagata, “Vibrational spectroscopy and dynamics of water,” Chem. Rev. 116, 7590–7607 (2016).10.1021/acs.chemrev.5b00640
    [5]
    H.-X. Zhou and X. Pang, “Electrostatic interactions in protein structure, folding, binding, and condensation,” Chem. Rev. 118, 1691–1741 (2018).10.1021/acs.chemrev.7b00305
    [6]
    V. Maurice and P. Marcus, “Progress in corrosion science at atomic and nanometric scales,” Prog. Mater. Sci. 95, 132–171 (2018).10.1016/j.pmatsci.2018.03.001
    [7]
    W. B. Hubbard, “Interiors of the giant planets,” Science 214, 145–149 (1981).10.1126/science.214.4517.145
    [8]
    R. Redmer, T. R. Mattsson, N. Nettelmann, and M. French, “The phase diagram of water and the magnetic fields of Uranus and Neptune,” Icarus 211, 798 (2011).10.1016/j.icarus.2010.08.008
    [9]
    S. Stanley and J. Bloxham, “Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields,” Nature 428, 151 (2004).10.1038/nature02376
    [10]
    S. Stanley and J. Bloxham, “Numerical dynamo models of Uranus’ and Neptune’s magnetic fields,” Icarus 184, 556 (2006).10.1016/j.icarus.2006.05.005
    [11]
    D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, and R. W. Falcone, “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606 (2017).10.1038/s41550-017-0219-9
    [12]
    N. F. Ness, M. H. Acuña, K. W. Behannon, L. F. Burlaga, J. E. P. Connerney, R. P. Lepping, and F. M. Neubauer, “Magnetic fields at Uranus,” Science 233, 85–89 (1986).10.1126/science.233.4759.85
    [13]
    M. French, T. R. Mattsson, N. Nettelmann, and R. Redmer, “Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors,” Phys. Rev. B 79, 054107 (2009).10.1103/physrevb.79.054107
    [14]
    P. Sperling, E. J. Gamboa, H. J. Lee, H. K. Chung, E. Galtier, Y. Omarbakiyeva, H. Reinholz, G. Röpke, U. Zastrau, J. Hastings, L. B. Fletcher, and S. H. Glenzer, “Free-electron x-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter,” Phys. Rev. Lett. 115, 115001 (2015).10.1103/PhysRevLett.115.115001
    [15]
    B. B. L. Witte, L. B. Fletcher, E. Galtier, E. Gamboa, H. J. Lee, U. Zastrau, R. Redmer, S. H. Glenzer, and P. Sperling, “Warm dense matter demonstrating non-drude conductivity from observations of nonlinear plasmon damping,” Phys. Rev. Lett. 118, 225001 (2017).10.1103/physrevlett.118.225001
    [16]
    B. B. L. Witte, G. Röpke, P. Neumayer, M. French, P. Sperling, V. Recoules, S. H. Glenzer, and R. Redmer, “Comment on “Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime”,” Phys. Rev. E 99, 047201 (2019).10.1103/PhysRevE.99.047201
    [17]
    S. Frydrych, J. Vorberger, N. J. Hartley, A. K. Schuster, K. Ramakrishna, A. M. Saunders, T. van Driel, R. W. Falcone, L. B. Fletcher, E. Galtier, E. J. Gamboa, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, A. Pak, K. Voigt, M. Roth, P. Sun, D. O. Gericke, T. Döppner, and D. Kraus, “Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter,” Nat. Commun. 11, 2620 (2020).10.1038/s41467-020-16426-y
    [18]
    P. M. Celliers, G. W. Collins, D. G. Hicks, M. Koenig, E. Henry, A. Benuzzi-Mounaix, D. Batani, D. K. Bradley, L. B. Da Silva, R. J. Wallace, S. J. Moon, J. H. Eggert, K. K. M. Lee, L. R. Benedetti, R. Jeanloz, I. Masclet, N. Dague, B. Marchet, M. Rabec Le Gloahec, C. Reverdin, J. Pasley, O. Willi, D. Neely, and C. Danson, “Electronic conduction in shock-compressed water,” Phys. Plasmas 11, L41 (2004).10.1063/1.1758944
    [19]
    M. D. Knudson, M. P. Desjarlais, R. W. Lemke, T. R. Mattsson, M. French, N. Nettelmann, and R. Redmer, “Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/cm3,” Phys. Rev. Lett. 108, 091102 (2012).10.1103/PhysRevLett.108.091102
    [20]
    T. Kimura, N. Ozaki, T. Sano, T. Okuchi, T. Sano, K. Shimizu, K. Miyanishi, T. Terai, T. Kakeshita, Y. Sakawa, and R. Kodama, “P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading,” J. Chem. Phys. 142, 164504 (2015).10.1063/1.4919052
    [21]
    M. Millot, S. Hamel, J. R. Rygg, P. M. Celliers, G. W. Collins, F. Coppari, D. E. Fratanduono, R. Jeanloz, D. C. Swift, and J. H. Eggert, “Experimental evidence for superionic water ice using shock compression,” Nat. Phys. 14, 297 (2018).10.1038/s41567-017-0017-4
    [22]
    C. A. Stan, D. Milathianaki, H. Laksmono, R. G. Sierra, T. A. McQueen, M. Messerschmidt, G. J. Williams, J. E. Koglin, T. J. Lane, M. J. Hayes, S. A. H. Guillet, M. Liang, A. L. Aquila, P. R. Willmott, J. S. Robinson, K. L. Gumerlock, S. Botha, K. Nass, I. Schlichting, R. L. Shoeman, H. A. Stone, and S. Boutet, “Liquid explosions induced by X-ray laser pulses,” Nat. Phys. 12, 966 (2016).10.1038/nphys3779
    [23]
    S. H. Glenzer, L. B. Fletcher, E. Galtier, B. Nagler, R. Alonso-Mori, B. Barbrel, S. B. Brown, D. A. Chapman, Z. Chen, C. B. Curry, F. Fiuza, E. Gamboa, M. Gauthier, D. O. Gericke, A. Gleason, S. Goede, E. Granados, P. Heimann, J. Kim, D. Kraus, M. J. MacDonald, A. J. MacKinnon, R. Mishra, A. Ravasio, C. Roedel, P. Sperling, W. Schumaker, Y. Y. Tsui, J. Vorberger, U. Zastrau, A. Fry, W. E. White, J. B. Hasting, and H. J. Lee, “Matter under extreme conditions experiments at the Linac Coherent Light Source,” J. Phys. B: At., Mol. Opt. Phys. 49, 092001 (2016).10.1088/0953-4075/49/9/092001
    [24]
    J. Yang, J. P. F. Nunes, K. Ledbetter, E. Biasin, M. Centurion, Z. Chen, A. A. Cordones, C. Crissman, D. P. Deponte, S. H. Glenzer, M.-F. Lin, M. Mo, C. D. Rankine, X. Shen, T. J. A. Wolf, and X. Wang, “Structure retrieval in liquid-phase electron scattering,” Phys. Chem. Chem. Phys 23, 1308 (2020).10.1039/D0CP06045C
    [25]
    T. Gorkhover, A. Ulmer, K. Ferguson, M. Bucher, F. R. N. C. Maia, J. Bielecki, T. Ekeberg, M. F. Hantke, B. J. Daurer, C. Nettelblad, J. Andreasson, A. Barty, P. Bruza, S. Carron, D. Hasse, J. Krzywinski, D. S. D. Larsson, A. Morgan, K. Mühlig, M. Müller, K. Okamoto, A. Pietrini, D. Rupp, M. Sauppe, G. Van Der Schot, M. Seibert, J. A. Sellberg, M. Svenda, M. Swiggers, N. Timneanu, D. Westphal, G. Williams, A. Zani, H. N. Chapman, G. Faigel, T. Möller, J. Hajdu, and C. Bostedt, “Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles,” Nat. Photonics 12, 150 (2018).10.1038/s41566-018-0110-y
    [26]
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt Brace Jovanovich Publishers, Toronto, 1976).
    [27]
    K. R. Beyerlein, H. O. Jönsson, R. Alonso-Mori, A. Aquila, S. Bajt, A. Barty, R. Bean, J. E. Koglin, M. Messerschmidt, D. Ragazzon, D. Sokaras, G. J. Williams, S. Hau-Riege, S. Boutet, H. N. Chapman, N. Tîmneanu, and C. Caleman, “Ultrafast nonthermal heating of water initiated by an X-ray free-electron laser,” Proc. Natl. Acad. Sci. U. S. A. 115, 5652 (2018).10.1073/pnas.1711220115
    [28]
    A. Ng, P. Sterne, S. Hansen, V. Recoules, Z. Chen, Y. Y. Tsui, and B. Wilson, “dc conductivity of two-temperature warm dense gold,” Phys. Rev. E 94, 033213 (2016).10.1103/PhysRevE.94.033213
    [29]
    Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid, Y. Y. Tsui, V. Recoules, and A. Ng, “Evolution of ac conductivity in nonequilibrium warm dense gold,” Phys. Rev. Lett. 110, 135001 (2013).10.1103/physrevlett.110.135001
    [30]
    K. Widmann, T. Ao, M. E. Foord, D. F. Price, A. D. Ellis, P. T. Springer, and A. Ng, “Single-state measurement of electrical conductivity of warm dense gold,” Phys. Rev. Lett. 92, 125002 (2004).10.1103/physrevlett.92.125002
    [31]
    J. D. Koralek, J. B. Kim, P. Brůža, C. B. Curry, Z. Chen, H. A. Bechtel, A. A. Cordones, P. Sperling, S. Toleikis, J. F. Kern, S. P. Moeller, S. H. Glenzer, and D. P. DePonte, “Generation and characterization of ultrathin free-flowing liquid sheets,” Nat. Commun. 9, 1353 (2018).10.1038/s41467-018-03696-w
    [32]
    V. Svoboda, R. Michiels, A. C. LaForge, J. Med, F. Stienkemeier, P. Slavíček, and H. J. Wörner, “Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses,” Sci. Adv. 6, eaaz0385 (2020).10.1126/sciadv.aaz0385
    [33]
    R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147 (1979).10.1063/1.555614
    [34]
    J. M. Ziman, “A theory of the electrical properties of liquid metals. I: The monovalent metals,” Philos. Mag. 6, 1013 (1961).10.1080/14786436108243361
    [35]
    M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, Oxford, 1980).
    [36]
    K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, and Ch. Gerth, “The soft x-ray free-electron laser FLASH at DESY: Beamlines, diagnostics and end-stations,” New J. Phys. 11, 023029 (2009).10.1088/1367-2630/11/2/023029
    [37]
    B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181 (1993).10.1006/adnd.1993.1013
    [38]
    R. Garcia-Molina, I. Abril, I. Kyriakou, and D. Emfietzoglou, “Inelastic scattering and energy loss of swift electron beams in biologically relevant materials,” Surf. Interface Anal. 49, 11 (2017).10.1002/sia.5947
    [39]
    U. Zastrau, P. Sperling, A. Becker, T. Bornath, R. Bredow, T. Döppner, S. Dziarzhytski, T. Fennel, L. B. Fletcher, E. Förster, C. Fortmann, S. H. Glenzer, S. Göde, G. Gregori, M. Harmand, V. Hilbert, B. Holst, T. Laarmann, H. J. Lee, T. Ma, J. P. Mithen, R. Mitzner, C. D. Murphy, M. Nakatsutsumi, P. Neumayer, A. Przystawik, S. Roling, M. Schulz, B. Siemer, S. Skruszewicz, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, T. White, M. Wöstmann, H. Zacharias, and R. Redmer, “Equilibration dynamics and conductivity of warm dense hydrogen,” Phys. Rev. E 90, 013104 (2014).10.1103/PhysRevE.90.013104
    [40]
    U. Zastrau, P. Sperling, M. Harmand, A. Becker, T. Bornath, R. Bredow, S. Dziarzhytski, T. Fennel, L. B. Fletcher, E. Förster, S. Göde, G. Gregori, V. Hilbert, D. Hochhaus, B. Holst, T. Laarmann, H. J. Lee, T. Ma, J. P. Mithen, R. Mitzner, C. D. Murphy, M. Nakatsutsumi, P. Neumayer, A. Przystawik, S. Roling, M. Schulz, B. Siemer, S. Skruszewicz, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, T. White, M. Wöstmann, H. Zacharias, T. Döppner, S. H. Glenzer, and R. Redmer, “Resolving ultrafast heating of dense cryogenic hydrogen,” Phys. Rev. Lett. 112, 105002 (2014).10.1103/physrevlett.112.105002
    [41]
    U. Samir, K. H. Wright, and N. H. Stone, “The expansion of a plasma into a vacuum: Basic phenomena and processes and applications to space plasma physics,” Rev. Geophys. 21, 1631 (1983).10.1029/rg021i007p01631
    [42]
    Z. Chen, M. Mo, L. Soulard, V. Recoules, P. Hering, Y. Y. Tsui, S. H. Glenzer, and A. Ng, “Interatomic potential in the nonequilibrium warm dense matter regime,” Phys. Rev. Lett. 121, 075002 (2018).10.1103/PhysRevLett.121.075002
    [43]
    W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584 (1984).10.1364/ol.8.000584
    [44]
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65, 016409 (2001).10.1103/PhysRevE.65.016409
    [45]
    M. French and R. Redmer, “Electronic transport in partially ionized water plasmas,” Phys. Plasmas 24, 092306 (2017).10.1063/1.4998753
    [46]
    R. Scipioni, L. Stixrude, and M. P. Desjarlais, “Electrical conductivity of SiO2 at extreme conditions and planetary dynamos,” Proc. Natl. Acad. Sci. U. S. A. 114, 9009 (2017).10.1073/pnas.1704762114
    [47]
    G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558(R) (1993).10.1103/physrevb.47.558
    [48]
    G. Kresse and J. Hafner, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48, 13115–13118 (1993).10.1103/physrevb.48.13115
    [49]
    G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).10.1103/physrevb.49.14251
    [50]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [51]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [52]
    M. French, T. R. Mattsson, and R. Redmer, “Diffusion and electrical conductivity in water at ultrahigh pressures,” Phys. Rev. B 82, 174108 (2010).10.1103/physrevb.82.174108
    [53]
    M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B 73, 045112 (2006).10.1103/PhysRevB.73.045112
    [54]
    R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570 (1957).10.1143/jpsj.12.570
    [55]
    D. A. Greenwood, “The Boltzmann equation in the theory of electrical conduction in metals,” Proc. Phys. Soc. 71, 585–596 (1958).10.1088/0370-1328/71/4/306
    [56]
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],” J. Chem. Phys. 124, 219906 (2006).10.1063/1.2204597
    [57]
    M. French and R. Redmer, “Optical properties of water at high temperature,” Phys. Plasmas 18, 043301 (2011).10.1063/1.3574507
    [58]
    A. Ravasio, M. Bethkenhagen, J.-A. Hernandez, A. Benuzzi-Mounaix, F. Datchi, M. French, M. Guarguaglini, F. Lefevre, S. Ninet, R. Redmer, and T. Vinci, “Metallization of shock-compressed liquid ammonia,” Phys. Rev. Lett. 126, 025003 (2020).10.1103/PhysRevLett.126.025003
    [59]
    B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, S. Kirkwood, V. Sametoglu, M. Reid, and Y. Y. Tsui, “Ab initio model on optical properties of non-equilibrium warm dense matter,” Phys. Rev. B 90, 035121 (2014).10.1103/physrevb.90.035121
    [60]
    D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, Heidelberg, 2005).
    [61]
    S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
    [62]
    J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” J. Chem. Phys. 123, 234505 (2005).10.1063/1.2121687
    [63]
    G. Hura, J. M. Sorenson, R. M. Glaeser, and T. Head-Gordon, “High-quality x-ray scattering experiment on liquid water at ambient conditions,” J. Chem. Phys. 113, 9140 (2000).10.1063/1.1319614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (354) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return