Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Zhang Leilei, Geng Hua Y., Wu Q.. Prediction of anomalous LA-TA splitting in electrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038403. doi: 10.1063/5.0043276
Citation: Zhang Leilei, Geng Hua Y., Wu Q.. Prediction of anomalous LA-TA splitting in electrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038403. doi: 10.1063/5.0043276

Prediction of anomalous LA-TA splitting in electrides

doi: 10.1063/5.0043276
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: s102genghy@caep.cn
  • Received Date: 2021-01-07
  • Accepted Date: 2021-03-24
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • Electrides are an emerging class of materials with excess electrons localized in interstices and acting as anionic interstitial quasi-atoms (ISQs). The spatial ion–electron separation means that electrides can be treated physically as ionic crystals, and this unusual behavior leads to extraordinary physical and chemical phenomena. Here, a completely different effect in electrides is predicted. By recognizing the long-range Coulomb interactions between matrix atoms and ISQs that are unique in electrides, a nonanalytic correction to the forces exerted on the matrix atoms is proposed. This correction gives rise to a longitudinal acoustic-transverse acoustic splitting in the acoustic branch of lattice phonons near the zone center, similar to the well-known longitudinal optical–transverse optical splitting in the phonon spectra of ionic compounds. The factors that govern this splitting are investigated, with isotropic fcc-Li and anisotropic hP4-Na as the typical examples. It is found that not all electrides can induce a detectable splitting, and criteria are given for this type of splitting. The present prediction unveils the rich phenomena in electrides and could lead to unprecedented applications.
  • loading
  • [1]
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, 1954).
    [2]
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Dryden Press, 1976).
    [3]
    S. S. Mitra, “Grüneisen parameter for long wavelength optical modes in ionic crystals,” Phys. Status Solidi 9(2), 519 (1965).10.1002/pssb.19650090222
    [4]
    A. S. Barker and H. W. Verleur, “Long wavelength optical phonon vibrations in mixed crystals,” Solid State Commun. 5(9), 695 (1967).10.1016/0038-1098(67)90352-3
    [5]
    S. S. Mitra, C. Postmus, and J. R. Ferraro, “Pressure dependence of long-wavelength optical phonons in ionic crystals,” Phys. Rev. Lett. 18(12), 455 (1967).10.1103/PhysRevLett.18.455
    [6]
    M. C. Abramo, M. Parrinello, M. P. Tosi, and D. E. Thornton, “Optical modes in binary alloys,” Phys. Lett. A 43(6), 483 (1973).10.1016/0375-9601(73)90004-2
    [7]
    R. J. Crook, F. Yang, and J. R. Sambles, “Long-range optical modes supported by a strongly absorbing thin organic film,” J. Opt. Soc. Am. B 10(2), 237 (1993).10.1364/JOSAB.10.000237
    [8]
    G. Komandin, O. Porodinkov, I. Spektor, S. Chuchupal, and A. Volkov, “Giant LO-TO frequency splitting of the soft mode in perovskites,” Ferroelectrics 463(1), 1 (2014).10.1080/00150193.2014.891416
    [9]
    J. S. Landers, J. L. Dye, A. Stacy, and M. J. Sienko, “Temperature-dependent electron spin interactions in lithium [2.1.1] cryptate electride powders and films,” J. Phys. Chem. 85(9), 1096 (1981).10.1021/j150609a004
    [10]
    S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, “High-density electron anions in a nanoporous single crystal:[Ca24Al28O64] 4+(4e-),” Science 301(5633), 626 (2003).10.1126/science.1083842
    [11]
    M.-S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47(4), 1311 (2014).10.1021/ar4002922
    [12]
    Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, “Computer-assisted inverse design of inorganic electrides,” Phys. Rev. X 7(1), 011017 (2017).10.1103/PhysRevX.7.011017
    [13]
    L. A. Burton, F. Ricci, W. Chen, G.-M. Rignanese, and G. Hautier, “High-throughput identification of electrides from all known inorganic materials,” Chem. Mater. 30(21), 7521 (2018).10.1021/acs.chemmater.8b02526
    [14]
    Q. Zhu, T. Frolov, and K. Choudhary, “Computational discovery of inorganic electrides from an automated screening,” Matter 1(5), 1293 (2019).10.1016/j.matt.2019.06.017
    [15]
    P. Li, G. Gao, Y. Wang, and Y. Ma, “Crystal structures and exotic behavior of magnesium under pressure,” J. Phys. Chem. C 114(49), 021745 (2010).10.1021/jp108136r
    [16]
    C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9(8), 624 (2010).10.1038/nmat2796
    [17]
    M. Martinez-Canales, C. J. Pickard, and R. J. Needs, “Thermodynamically stable phases of carbon at multiterapascal pressures,” Phys. Rev. Lett. 108(4), 045704 (2012).10.1103/PhysRevLett.108.045704
    [18]
    Y.-M. Chen, H.-Y. Geng, X.-Z. Yan, Z.-W. Wang, X.-R. Chen, and Q. Wu, “Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure,” Chin. Phys. B 26(5), 056102 (2017).10.1088/1674-1056/26/5/056102
    [19]
    J. Zhou, L. Shen, M. Yang, H. Cheng, W. Kong, and Y. P. Feng, “Discovery of hidden classes of layered electrides by extensive high-throughput material screening,” Chem. Mater. 31(6), 1860 (2019).10.1021/acs.chemmater.8b03021
    [20]
    B. Wan, J. Zhang, L. Wu, and H. Gou, “High-pressure electrides: From design to synthesis,” Chin. Phys. B 28(10), 106201 (2019).10.1088/1674-1056/ab3f95
    [21]
    J. L. Dye, “Electrides: Ionic salts with electrons as the anions,” Science 247(4943), 663 (1990).10.1126/science.247.4943.663
    [22]
    D. J. Singh, H. Krakauer, C. Haas, and W. E. Pickett, “Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e−,” Nature 365(6441), 39 (1993).10.1038/365039a0
    [23]
    J. L. Dye, “Electrons as anions,” Science 301(5633), 607 (2003).10.1126/science.1088103
    [24]
    X. Zhang and G. Yang, “Recent advances and applications of inorganic electrides,” J. Phys. Chem. Lett. 11(10), 3841 (2020).10.1021/acs.jpclett.0c00671
    [25]
    J. B. Neaton and N. W. Ashcroft, “Pairing in dense lithium,” Nature 400(6740), 141 (1999).10.1038/22067
    [26]
    M. Marqués, M. I. McMahon, E. Gregoryanz, M. Hanfland, C. L. Guillaume, C. J. Pickard, G. J. Ackland, and R. J. Nelmes, “Crystal structures of dense lithium: A metal-semiconductor-metal transition,” Phys. Rev. Lett. 106(9), 095502 (2011).10.1103/PhysRevLett.106.095502
    [27]
    Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458(7235), 182 (2009).10.1038/nature07786
    [28]
    Z. Yu, H. Y. Geng, Y. Sun, and Y. Chen, “Optical properties of dense lithium in electride phases by first-principles calculations,” Sci. Rep. 8(1), 3868 (2018).10.1038/s41598-018-22168-1
    [29]
    D. Alfè, “PHON: A program to calculate phonons using the small displacement method,” Comput. Phys. Commun. 180(12), 2622 (2009).10.1016/j.cpc.2009.03.010
    [30]
    R. Paul, S. X. Hu, V. V. Karasiev, S. A. Bonev, and D. N. Polsin, “Thermal effects on the electronic properties of sodium electride under high pressures,” Phys. Rev. B 102, 094103 (2020).10.1103/PhysRevB.102.094103
    [31]
    M.-s. Miao and R. Hoffmann, “High-pressure electrides: The chemical nature of interstitial quasiatoms,” J. Am. Chem. Soc. 137(10), 3631 (2015).10.1021/jacs.5b00242
    [32]
    M.-s. Miao, R. Hoffmann, J. Botana, I. I. Naumov, and R. J. Hemley, “Quasimolecules in compressed lithium,” Angew. Chem., Int. Ed. 56(4), 972 (2016).10.1002/anie.201608490
    [33]
    R. F. W. Bader, “Atoms in molecules: A quantum theory,” J. Mol. Struct.: THEOCHEM 360, 1 (1996).10.1016/S0166-1280(96)90925-2
    [34]
    W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21(8), 084204 (2009).10.1088/0953-8984/21/8/084204
    [35]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864 (1964).10.1103/PhysRev.136.B864
    [36]
    W. Kohn and L. J. Sham, “Quantum density oscillations in an inhomogeneous electron gas,” Phys. Rev. 137(6A), A1697 (1965).10.1103/PhysRev.137.A1697
    [37]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 011169 (1996).10.1103/PhysRevB.54.11169
    [38]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15 (1996).10.1016/0927-0256(96)00008-0
    [39]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758 (1999).10.1103/PhysRevB.59.1758
    [40]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 017953 (1994).10.1103/PhysRevB.50.17953
    [41]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865
    [42]
    S. Baroni and R. Resta, “Ab initio calculation of the macroscopic dielectric constant in silicon,” Phys. Rev. B 33(10), 7017 (1986).10.1103/physrevb.33.7017
    [43]
    E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, “An improved grid-based algorithm for Bader charge allocation,” J. Comput. Chem. 28(5), 899 (2007).10.1002/jcc.20575
    [44]
    G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density,” Comput. Mater. Sci. 36(3), 354 (2006).10.1016/j.commatsci.2005.04.010
    [45]
    M. Yu and D. R. Trinkle, “Accurate and efficient algorithm for Bader charge integration,” J. Chem. Phys. 134, 064111 (2011).10.1063/1.3553716
    [46]
    L. Zhang, Q. Wu, S. Li, Y. Sun, X. Yan, Y. Chen, and H. Y. Geng, “Interplay of anionic quasi-atoms and interstitial point defects in electrides: Abnormal interstice occupation and colossal charge state of point defects in dense fcc-lithium,” ACS Appl. Mater. Interfaces 13(5), 6130 (2021).10.1021/acsami.0c17095
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (175) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return