Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Rosmej O. N., Shen X. F., Pukhov A., Antonelli L., Barbato F., Gyrdymov M., Günther M. M., Zähter S., Popov V. S., Borisenko N. G., Andreev N. E.. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6(4): 048401. doi: 10.1063/5.0042315
Citation: Rosmej O. N., Shen X. F., Pukhov A., Antonelli L., Barbato F., Gyrdymov M., Günther M. M., Zähter S., Popov V. S., Borisenko N. G., Andreev N. E.. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6(4): 048401. doi: 10.1063/5.0042315

Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity

doi: 10.1063/5.0042315
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: o.rosmej@gsi.de. Permanent address: GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
  • Received Date: 2020-12-29
  • Accepted Date: 2021-05-25
  • Available Online: 2021-07-01
  • Publish Date: 2021-07-15
  • Direct laser acceleration (DLA) of electrons in a plasma of near-critical electron density (NCD) and the associated synchrotron-like radiation are discussed for moderate relativistic laser intensity (normalized laser amplitude a0 ≤ 4.3) and ps length pulse. This regime is typical of kJ PW-class laser facilities designed for high-energy-density (HED) research. In experiments at the PHELIX facility, it has been demonstrated that interaction of a 1019 W/cm2 sub-ps laser pulse with a sub-mm length NCD plasma results in the generation of high-current well-directed super-ponderomotive electrons with an effective temperature ten times higher than the ponderomotive potential [Rosmej et al., Plasma Phys. Controlled Fusion 62 , 115024 (2020)]. Three-dimensional particle-in-cell simulations provide good agreement with the measured electron energy distribution and are used in the current work to study synchrotron radiation from the DLA-accelerated electrons. The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultrahigh photon number of 7 × 1011 in the 1–30 keV photon energy range at the focused laser energy of 20 J. Numerical simulations of betatron x-ray phase contrast imaging based on the DLA process for the parameters of a PHELIX laser are presented. The results are of interest for applications in HED experiments, which require a ps x-ray pulse and a high photon flux.
  • loading
  • [1]
    S. Fourmaux, S. Corde, K. T. Phuoc et al., “Single shot phase contrast imaging using laser-produced Betatron x-ray beams,” Opt. Lett. 36, 2426 (2011).10.1364/ol.36.002426
    [2]
    S. Kneip, C. McGuffey, F. Dollar et al., “X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator,” Appl. Phys. Lett. 99, 093701 (2011).10.1063/1.3627216
    [3]
    J. Wenz, S. Schleede, K. Khrennikov et al., “Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source,” Nat. Commun. 6, 7568 (2015).10.1038/ncomms8568
    [4]
    J. M. Cole, J. C. Wood, N. C. Lopes et al., “Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone,” Sci. Rep. 5, 13244 (2015).10.1038/srep13244
    [5]
    J. C. Wood, D. J. Chapman, K. Poder et al., “Ultrafast imaging of laser driven shock waves using betatron x-rays from laser wake-field accelerator,” Sci. Rep. 8, 11010 (2018).10.1038/s41598-018-29347-0
    [6]
    A. Ravasio, M. Koenig, S. Le Pape et al., “Hard x-ray radiography for density measurement in shock compressed matter,” Phys. Plasmas 15, 060701 (2008).10.1063/1.2928156
    [7]
    J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [8]
    J. Ferri, X. Davoine, S. Y. Kalmykov, and A. Lifschitz, “Electron acceleration and generation of high brilliance x-ray radiation in kilojoule, sub-picosecond laser-plasma interactions,” Phys. Rev. Accel. Beams 19, 10130 (2016).10.1103/physrevaccelbeams.19.101301
    [9]
    F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58(10), 103001 (2016).10.1088/0741-3335/58/10/103001
    [10]
    A. Rousse, K. T. Phuoc, R. Shah et al., “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93(13), 135005 (2004).10.1103/physrevlett.93.135005
    [11]
    J. Ju, K. Svensson, A. Döpp et al., “Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes,” Appl. Phys. Lett. 100, 191106 (2012).10.1063/1.4712594
    [12]
    S. Cipiccia, M. R. Islam, B. Ersfeld et al., “Gamma-rays from harmonically resonant betatron oscillation in plasma wake,” Nat. Phys. 7, 867 (2011).10.1038/nphys2090
    [13]
    V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).10.1063/1.3695389
    [14]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267
    [15]
    N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov et al., “Resonant excitation of wake-fields by a laser pulse in a plasma,” JETP Lett. 55(3), 571–577 (1992).
    [16]
    N. E. Andreev, V. I. Kirsanov, and L. M. Gorbunov, “Stimulated processes and self-modulation of short intense laser pulses in laser wake field accelerator,” Phys. Plasmas 2(6), 2573–2582 (1995).10.1063/1.871219
    [17]
    F. Albert, N. Lemos, J. L. Shaw et al., “Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses,” Phys. Rev. Lett. 118(13), 134801 (2017).10.1103/physrevlett.118.134801
    [18]
    F. Albert, N. Lemos, J. L. Shaw et al., “Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities,” Nucl. Fusion 59(3), 032003 (2018).10.1088/1741-4326/aad058
    [19]
    H. Y. Wang, B. Liu, X. Q. Yan, and M. Zepf, “Gamma-ray emission in near critical density plasmas at laser intensities of 1021 W/cm2,” Phys. Plasmas 22, 033102 (2015).10.1063/1.4913991
    [20]
    T. W. Huang, A. P. L. Robinson, C. T. Zhou et al., “Characteristics of betatron radiation from direct-laser-accelerated electrons,” Phys. Rev. E 93, 063203 (2016).10.1103/PhysRevE.93.063203
    [21]
    O. N. Rosmej, N. E. Andreev, S. Zaehter et al., “Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays,” New J. Phys. 21, 043044 (2019).10.1088/1367-2630/ab1047
    [22]
    O. N. Rosmej, M. Gyrdymov, M. M. Günther et al., “High-current laser-driven beams of relativistic electrons for high energy density research” Plasma Phys. Controlled Fusion 62, 115024 (2020).10.1088/1361-6587/abb24e
    [23]
    S. Y. Gus’kov, J. Limpouch, P. Nicolaï, and V. T. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615
    [24]
    N. G. Borisenko, A. M. Khalenkov, V. Kmetik et al., “Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma,” Fusion Sci. Technol. 51(4), 655–664 (2007).10.13182/fst07-a1460
    [25]
    A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847 (1999).10.1063/1.873242
    [26]
    A. Pukhov, “Strong field interaction of laser radiation,” Rep. Prog. Phys. 66, 47–101 (2003).10.1088/0034-4885/66/1/202
    [27]
    L. P. Pugachev, N. E. Andreev, P. R. Levashov, and O. N. Rosmej, “Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 88–93 (2016).10.1016/j.nima.2016.02.053
    [28]
    V. Bagnoud, B. Aurand, A. Blazevic et al., “Commissioning and early experiments of the PHELIX facility,” Appl. Phys. B 100, 137–150 (2010).10.1007/s00340-009-3855-7
    [29]
    F. Consoli, R. De Angelis, T. S. Rosinson et al., “Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range-laser-matter interactions,” Sci. Rep. 9, 8551 (2019).10.1038/s41598-019-44937-2
    [30]
    A. Pukhov, “Tree-dimensional electromagnetic relativistic particle-in-cell code VLPL (virtual laser plasma lab),” J. Plasma Phys. 61, 425–433 (1999).10.1017/s0022377899007515
    [31]
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
    [32]
    S. Kiselev, A. Pukhov, and I. Kostyukov, “X-ray generation in strongly nonlinear plasma waves,” Phys. Rev. Lett. 93, 135004 (2004).10.1103/physrevlett.93.135004
    [33]
    C. P. Ridgers, C. S. Brady, R. Duclous et al., “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [34]
    X. B. Li, B. Qiao, H. X. Chang et al., “Identifying the quantum radiation reaction by using colliding ultraintense lasers in gases,” Phys. Rev. A 98, 052119 (2018).10.1103/physreva.98.052119
    [35]
    L. P. Pugachev and N. E. Andreev, “Characterization of accelerated electrons generated in foams under the action of petawatt lasers,” J. Phys.: Conf. Ser. 1147, 012080 (2019).10.1088/1742-6596/1147/1/012080
    [36]
    L. Antonelli, F. Barbato, D. Mancelli et al., “X-ray phase-contrast imaging for laser-induced shock-waves,” Europhys. Lett. 125, 35002 (2019).10.1209/0295-5075/125/35002
    [37]
    F. Barbato, S. Atzeni, D. Batani et al., “Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source,” Sci. Rep. 9, 18805 (2019).10.1038/s41598-019-55074-1
    [38]
    J. M. Cowley, Diffraction Physics (Elsevier, 1995), Vol. 9, p. 481.
    [39]
    D. A. Martinez, V. A. Smalyuk, J. O. Kane et al., “Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF,” Phys. Rev. Lett. 114, 215004 (2015).10.1103/physrevlett.114.215004
    [40]
    R. Nora, W. Theobald, R. Betti et al., “Gigabar spherical shock generation on the OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).10.1103/PhysRevLett.114.045001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (254) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return