Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Liu Qinying, Liu Shiyu, Luo Yongkang, Han Xiaotao. Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201. doi: 10.1063/5.0040208
Citation: Liu Qinying, Liu Shiyu, Luo Yongkang, Han Xiaotao. Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201. doi: 10.1063/5.0040208

Pulsed-field nuclear magnetic resonance: Status and prospects

doi: 10.1063/5.0040208
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xthan@mail.hust.edu.cn
  • Received Date: 2020-12-11
  • Accepted Date: 2021-01-31
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • High-magnetic-field nuclear magnetic resonance (NMR) has manifested itself as an indispensable tool in modern scientific research in the fields of physics, chemistry, materials science, biology, and medicine, among others, owing to its great advantages in both measurement sensitivity and quantum controllability. At present, the use of pulsed fields is the only controllable and nondestructive way to generate high magnetic fields of up to 100 T. NMR combined with pulsed fields is therefore considered to have immense potential for application in multiple scientific and technical disciplines. Irrespective of the paramount technical challenges, including short duration of the pulsed fields, unstable plateaus, and poor field homogeneity and reproducibility, great progress has been made in a number of pulsed-field laboratories in Germany, France, and Japan. In this paper, we briefly review the status of the pulsed-field NMR technique, as well as its applications in multiple disciplines. We also discuss future trends with regard to the upgrading of pulsed-field NMR.
  • loading
  • [1]
    Z. Gan, P. Gor’kov, A. S. T. Cross, and D. Massiot, “Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields,” J. Am. Chem. Soc. 124, 5634 (2002).10.1021/ja025849p
    [2]
    F.-J. Wu, L. S. Simeral, A. A. Mrse, J. L. Eilertsen, L. Negureanu, Z. Gan, F. R. Fronczek, R. W. Hall, and L. G. Butler, “Structural characterization of Al10O6iBu16(μ-H)2, a high aluminum content cluster: Further studies of methylaluminoxane (MAO) and related aluminum complexes,” Inorg. Chem. 46, 44 (2007).10.1021/ic060291y
    [3]
    Q. Wang, W. Li, I. Hung, F. Mentink-Vigier, X. Wang, G. Qi, X. Wang, Z. Gan, J. Xu, and F. Deng, “Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy,” Nat. Commun. 11, 3620 (2020).10.1038/s41467-020-17470-4
    [4]
    H. W. Spiess, “NMR spectroscopy: Pushing the limits of sensitivity,” Angew. Chem., Int. Ed. 47, 639 (2008).10.1002/anie.200704428
    [5]
    J. Liu, Q. Wang, L. Qin, K. Wang, H. Liu, L. Wang, Y. Wang, and Y. D. B. Zhou, “Generation of 32.35 T with an all-superconducting magnet at IEECAS,” in IEEE CSC and ESAS Superconductivity News Forum, Global ed. (IEEE, 2020).
    [6]
    J. R. Miller, “The NHMFL 45-T hybrid magnet system: Past, present, and future,” IEEE Trans. Appl. Supercond. 13, 1385 (2003).10.1109/tasc.2003.812673
    [7]
    W. G. Moulton and A. P. Reyes, “Nuclear magnetic resonace in solids at very high magnetic fields,” High Magn. Fields 3, 185 (2006).10.1142/9789812774880_0007
    [8]
    Y. Li, A. M. Wolters, P. V. Malawey, J. V. Sweedler, and A. G. Webb, “Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy,” Anal. Chem. 71, 4815 (1999).10.1021/ac990855y
    [9]
    D. Högemann, V. Ntziachristos, L. Josephson, and R. Weissleder, “High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes,” Bioconjugate Chem. 13, 116 (2002).10.1021/bc015549h
    [10]
    M. A. Macnaughtan, T. Hou, J. Xu, and D. Raftery, “High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe,” Anal. Chem. 75, 5116 (2003).10.1021/ac034400r
    [11]
    R. Freeman and E. Kupče, “New methods for fast multidimensional NMR,” J. Biomol. NMR 27, 101 (2003).10.1023/a:1024960302926
    [12]
    H. Wang, L. Ciobanu, and A. Webb, “Reduced data acquisition time in multi-dimensional NMR spectroscopy using multiple-coil probes,” J. Magn. Reson. 173, 134 (2005).10.1016/j.jmr.2004.11.024
    [13]
    J. A. Norcross, C. T. Milling, D. L. Olson, D. Xu, A. Audrieth, R. Albrecht, K. Ruan, J. Likos, C. Jones, and T. L. Peck, “Multiplexed NMR: An automated CapNMR dual-sample probe,” Anal. Chem. 82, 7227 (2010).10.1021/ac101003f
    [14]
    M. R. Geller, Fundamentals of Physics (Eolss Publishers Co. Ltd., Oxford, UK, 2013).
    [15]
    T. Goto, M. Mori, K. Chiba, T. Suzuki, and T. Fukase, “High-field Cu/La-NMR study on high-Tc cuprate La2−xBaxCuO4 (x = 0.125),” Physica B 284-288, 657 (2000).10.1016/s0921-4526(99)02322-4
    [16]
    P. M. C. Rourke, I. Mouzopoulou, X. Xu, C. Panagopoulos, Y. Wang, B. Vignolle, C. Proust, E. V. Kurganova, U. Zeitler, Y. Tanabe, T. Adachi, Y. Koike, and N. E. Hussey, “Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4,” Nat. Phys. 7, 455 (2011).10.1038/nphys1945
    [17]
    S. E. Sebastian, N. Harrison, E. Palm, T. P. Murphy, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, “A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor,” Nature 454, 200 (2008).10.1038/nature07095
    [18]
    M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li, and Y. Wu, “Multifunctional high-performance van der Waals heterostructures,” Nat. Nanotechnol. 12, 1148 (2017).10.1038/nnano.2017.208
    [19]
    J. G. Analytis, R. D. McDonald, S. C. Riggs, J.-H. Chu, G. S. Boebinger, and I. R. Fisher, “Two-dimensional Dirac fermions in a topological insulator: Transport in the quantum limit,” Nat. Phys. 6, 960 (2010).10.1038/nphys1861
    [20]
    C.-L. Zhang, S.-Y. Xu, C. M. Wang, Z. Lin, Z. Z. Du, C. Guo, C.-C. Lee, H. Lu, Y. Feng, S.-M. Huang, G. Chang, C.-H. Hsu, H. Liu, H. Lin, L. Li, C. Zhang, J. Zhang, X.-C. Xie, T. Neupert, M. Z. Hasan, H.-Z. Lu, J. Wang, and S. Jia, “Magnetic-tunnelling-induced Weyl node annihilation in TaP,” Nat. Phys. 13, 979 (2017).10.1038/nphys4183
    [21]
    T. Caldwell, P. L. Kuhns, W. G. Moulton, A. P. Reyes, P. N. Rogers, and R. N. Shelton, “High field NMR studies of NaV2O5 to 44.7 T,” Int. J. Mod. Phys. B 16, 3298 (2008).10.1142/9789812777805_0104
    [22]
    M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons, Ltd., Chichester, 2002).
    [23]
    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, “Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy,” Nature 477, 191 (2011).10.1038/nature10345
    [24]
    D. Shaw, Fourier Transform NMR Spectroscopy, 2nd ed, (Elsevier Press; IGE Medical Systems Ltd., Amsterdam; Slough, UK, 1984).
    [25]
    Y.-Y. Lin, S. Ahn, N. Murali, W. Brey, C. R. Bowers, and W. S. Warren, “High-resolution, >1 GHz NMR in unstable magnetic fields,” Phys. Rev. Lett. 85, 3732 (2000).10.1103/physrevlett.85.3732
    [26]
    Z. Gan, H.-T. Kwak, M. Bird, T. Cross, P. Gor’kov, W. Brey, and K. Shetty, “High-field NMR using resistive and hybrid magnets,” J. Magn. Reson. 191, 135 (2008).10.1016/j.jmr.2007.12.008
    [27]
    M. Li, J. L. Schiano, J. E. Samra, K. K. Shetty, and W. W. Brey, “Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control,” J. Magn. Reson. 212, 254 (2011).10.1016/j.jmr.2011.05.010
    [28]
    P. J. M. van Bentum, J. C. Maan, J. W. M. van Os, and A. P. M. Kentgens, “Strategies for solid-state NMR in high-field Bitter and hybrid magnets,” Chem. Phys. Lett. 376, 338 (2003).10.1016/s0009-2614(03)01014-5
    [29]
    K. Hashi, T. Shimizu, A. Goto, T. Kiyoshi, S. Matsumoto, H. Wada, T. Fujito, K. Hasegawa, M. Yoshikawa, T. Miki, S. Ito, M. Hamada, and S. Hayashi, “Achievement of a 920-MHz high resolution NMR,” J. Magn. Reson. 156, 318 (2002).10.1006/jmre.2002.2559
    [30]
    J. Haase, D. Eckert, H. Siegel, H. Eschrig, K. H. Müller, and F. Steglich, “High-field NMR in pulsed magnets,” Solid State Nucl. Magn. Reson. 23, 263 (2003).10.1016/s0926-2040(03)00015-8
    [31]
    J. Haase, D. Eckert, H. Siegel, H. Eschrig, K.-H. Müller, and F. Steglich, “Nuclear magnetic resonance in pulsed high-field magnets,” Concepts Magn. Reson., Part B 19, 9 (2003).10.1002/cmr.b.10084
    [32]
    J. Haase, D. Eckert, H. Siegel, K.-H. Müller, H. Eschrig, A. Simon, and F. Steglich, “NMR in pulsed high magnetic fields,” J. Magn. Magn. Mater. 272-276, e1623–e1625 (2004).10.1016/j.jmmm.2003.12.951
    [33]
    J. Haase, “First 2H NMR at 58 T,” Appl. Magn. Reson. 27, 297 (2004).10.1007/bf03166323
    [34]
    J. Haase, D. Eckert, H. Siegel, H. Eschrig, K.-H. Müller, A. Simon, and F. Steglich, “NMR at the Frontier of pulsed high field magnets,” Physica B 346-347, 514 (2004).10.1016/j.physb.2004.01.138
    [35]
    J. Haase, M. Kozlov, K.-H. Müller, H. Siegel, B. Büchner, H. Eschrig, and A. G. Webb, “NMR in pulsed high magnetic fields at 1.3 GHz,” J. Magn. Magn. Mater. 290-291, 438 (2005).10.1016/j.jmmm.2004.11.494
    [36]
    J. Haase, M. B. Kozlov, A. G. Webb, B. Büchner, H. Eschrig, K.-H. Müller, and H. Siegel, “2 GHz 1H NMR in pulsed magnets,” Solid State Nucl. Magn. Reson 27, 206–208 (2005).10.1016/j.ssnmr.2004.10.002
    [37]
    M. B. Kozlov, J. Haase, C. Baumann, and A. G. Webb, “56 T 1H NMR at 2.4 GHz in a pulsed high-field magnet,” Solid State Nucl. Magn. Reson. 28, 64 (2005).10.1016/j.ssnmr.2005.06.003
    [38]
    G. Zheng, K. Katayama, M. Nishiyama, S. Kawasaki, N. Nishihagi, S. Kimura, M. Hagiwara, and K. Kindo, “Spin–echo NMR in pulsed high magnetic fields up to 48 T,” J. Phys. Soc. Jpn. 78, 095001 (2009).10.1143/jpsj.78.095001
    [39]
    S. Kawasaki, T. Motohashi, K. Shimada, T. Ono, R. Kanno, M. Karppinen, H. Yamauchi, and G. Zheng, “Measurement of electron correlations in LixCoO2 (x = 0.0–0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques,” Phys. Rev. B 79, 220514 (2009).10.1103/physrevb.79.220514
    [40]
    B. Meier, J. Kohlrautz, J. Haase, M. Braun, F. Wolff-Fabris, E. Kampert, T. Herrmannsdörfer, and J. Wosnitza, “Nuclear magnetic resonance apparatus for pulsed high magnetic fields,” Rev. Sci. Instrum. 83, 083113 (2012).10.1063/1.4746988
    [41]
    G.-Q. Zheng, K. Katayama, M. Kandatsu, N. Nishihagi, S. Kimura, M. Hagiwara, and K. Kindo, “59Co NMR at pulsed high magnetic fields,” J. Low Temp. Phys. 159, 280 (2010).10.1007/s10909-009-0130-6
    [42]
    E. Abou-Hamad, P. Bontemps, and G. L. J. A. Rikken, “NMR in pulsed magnetic field,” Solid State Nucl. Magn. Reson. 40, 42 (2011).10.1016/j.ssnmr.2011.06.002
    [43]
    H. Stork, P. Bontemps, and G. L. J. A. Rikken, “NMR in pulsed high-field magnets and application to high-TC superconductors,” J. Magn. Reson. 234, 30 (2013).10.1016/j.jmr.2013.06.005
    [44]
    J. Wosnitza, A. D. Bianchi, J. Freudenberger, J. Haase, T. Herrmannsdörfer, N. Kozlova, L. Schultz, Y. Skourski, S. Zherlitsyn, and S. A. Zvyagin, “Dresden pulsed magnetic field facility,” J. Magn. Magn. Mater. 310, 2728 (2007).10.1016/j.jmmm.2006.10.1115
    [45]
    F. Weickert, B. Meier, S. Zherlitsyn, T. Herrmannsdörfer, R. Daou, M. Nicklas, J. Haase, F. Steglich, and J. Wosnitza, “Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld–Magnetlabor Dresden,” Meas. Sci. Technol. 23, 105001 (2012).10.1088/0957-0233/23/10/105001
    [46]
    A. Orlova, P. Frings, M. Suleiman, and G. L. J. A. Rikken, “New high homogeneity 55 T pulsed magnet for high field NMR,” J. Magn. Reson. 268, 82 (2016).10.1016/j.jmr.2016.04.016
    [47]
    E. Dalgaard, E. Auken, and J. J. Larsen, “Adaptive noise cancelling of multichannel magnetic resonance sounding signals,” Geophys. J. Int. 191, 88 (2012).10.1111/j.1365-246x.2012.05618.x
    [48]
    W. Chen, H. Ma, D. Yu, and H. Zhang, “SVD-based technique for interference cancellation and noise reduction in NMR measurement of time-dependent magnetic fields,” Sensors 16, 323 (2016).10.3390/s16030323
    [49]
    T. Iijima, K. Takegoshi, K. Hashi, T. Fujito, and T. Shimizu, “High-resolution NMR with resistive and hybrid magnets: Deconvolution using a field-fluctuation signal,” J. Magn. Reson. 184, 258 (2007).10.1016/j.jmr.2006.10.010
    [50]
    T. Iijima and K. Takegoshi, “Compensation of effect of field instability by reference deconvolution with phase reconstruction,” J. Magn. Reson. Imaging 191, 128 (2008).10.1016/j.jmr.2007.12.009
    [51]
    B. Meier, S. Greiser, J. Haase, T. Herrmannsdörfer, F. Wolff-Fabris, and J. Wosnitza, “NMR signal averaging in 62 T pulsed fields,” J. Magn. Reson. 210, 1 (2011).10.1016/j.jmr.2011.02.007
    [52]
    J. Kohlrautz, S. Reichardt, E. L. Green, H. Kühne, J. Wosnitza, and J. Haase, “NMR shift and relaxation measurements in pulsed high-field magnets up to 58 T,” J. Magn. Reson. 263, 1 (2016).10.1016/j.jmr.2015.12.009
    [53]
    J. Kohlrautz, J. Haase, E. L. Green, Z. T. Zhang, J. Wosnitza, T. Herrmannsdörfer, H. A. Dabkowska, B. D. Gaulin, R. Stern, and H. Kühne, “Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54 T,” J. Magn. Reson. 271, 52 (2016).10.1016/j.jmr.2016.08.005
    [54]
    J. Zeng, P. Zhou, and B. R. Donald, “Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data,” J. Biomol. NMR 50, 371 (2011).10.1007/s10858-011-9522-4
    [55]
    Q. Xing, P. Huang, J. Yang, J. Sun, Z. Gong, X. Dong, et al. “Visualizing an ultra-weak protein–protein interaction in phosphorylation signaling,” Angew. Chem., Int. Ed 53, 11501–11505 (2014).10.1002/anie.201407928
    [56]
    Z. Liu, Z. Gong, D.-C. Guo, W.-P. Zhang, and C. Tang, “Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe,” Biochemistry 53, 1403 (2014).10.1021/bi4015715
    [57]
    W.-X. Jiang, X.-H. Gu, X. Dong, and C. Tang, “Lanthanoid tagging via an unnatural amino acid for protein structure characterization,” J. Biomol. NMR 67, 273 (2017).10.1007/s10858-017-0106-9
    [58]
    Z. Gong, X. Gu, D. Guo, J. Wang, and C. Tang, “Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement,” Angew. Chem., Int. Ed. 56, 1002 (2020).10.1002/anie.201609830
    [59]
    Z. Gong, C. D. Schwieters, and C. Tang, “Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics,” Methods 148, 48 (2018).10.1016/j.ymeth.2018.04.006
    [60]
    L. J. Berliner, “The evolution of biomedical EPR (ESR),” Biomed. Spectrosc. Imaging 5, 5 (2016).10.3233/bsi-150128
    [61]
    J. J. Inbaraj, T. B. Cardon, M. Laryukhin, S. M. Grosser, and G. A. Lorigan, “Determining the topology of integral membrane peptides using EPR spectroscopy,” J. Am. Chem. Soc. 128, 9549 (2006).10.1021/ja0622204
    [62]
    V. F. Mitrovic, E. E. Sigmund, M. Eschrig, H. N. Bachman, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, “Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor,” Nature 413, 501 (2006).10.1038/35097039
    [63]
    H. Zuo, J. Bao, Y. Liu, J. Wang, Z. Jin, Z. Xia, L. Li, Z. Xu, J. Kang, Z. Zhu, and G. Cao, “Temperature and angular dependence of the upper critical field in K2Cr3As3,” Phys. Rev. B 95, 014502 (2017).10.1103/physrevb.95.014502
    [64]
    L. Balicas, J. S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, . V. Barzykin, and L. P. Gor’kov, “Superconductivity in an organic insulator at very high magnetic fields,” Phys. Rev. Lett. 87, 067002 (2001).10.1103/physrevlett.87.067002
    [65]
    S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, “Magnetic-field-induced superconductivity in a two-dimensional organic conductor,” Nature 410, 908 (2001).10.1038/35073531
    [66]
    K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, “Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift,” Nature 396, 658 (1998).10.1038/25315
    [67]
    A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, E. D. Bauer, and S. E. Brown, “Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance,” Nature 574, 72 (2019).10.1038/s41586-019-1596-2
    [68]
    K. Matano, M. Kriener, K. Segawa, Y. Ando, and G. Zheng, “Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3,” Nat. Phys. 12, 852 (2016).10.1038/nphys3781
    [69]
    P. Fulde and R. A. Ferrell, “Superconductivity in a strong spin-exchange field,” Phys. Rev. 135, A550 (1964).10.1103/physrev.135.a550
    [70]
    A. I. Larkin and Y. N. Ovchinnikov, “Density of states in inhomogeneous superconductors,” Sov. Phys. JETP 34, 1144 (1972).
    [71]
    Y. Matsuda and H. Shimahara, “Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors,” J. Phys. Soc. Jpn. 76, 051005 (2007).10.1143/jpsj.76.051005
    [72]
    J. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter, R. Kato, H. Yamamoto, M. Kobayashi, and S. Brown, “Zeeman–driven phase transition within the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2,” Phys. Rev. Lett. 107, 087002 (2011).10.1103/physrevlett.107.087002
    [73]
    H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrović, “Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2,” Nat. Phys. 10, 928 (2014).10.1038/nphys3121
    [74]
    G. Koutroulakis, H. Kühne, J. A. Schlueter, J. Wosnitza, and S. E. Brown, “Microscopic study of the Fulde–Ferrell–Larkin–Ovchinnikov state in an all-organic superconductor,” Phys. Rev. Lett. 116, 067003 (2016).10.1103/physrevlett.116.067003
    [75]
    Y. Wang, X. Zhang, F. Pollmann, M. Cheng, and Z. Y. Meng, “Quantum spin liquid with even ising gauge field structure on Kagome lattice,” Phys. Rev. Lett. 121, 057202 (2018).10.1103/physrevlett.121.057202
    [76]
    N. Ma, G. Sun, Y. You, C. Xu, A. Vishwanath, A. W. Sandvik, and Z. Y. Meng, “Dynamical signature of fractionalization at the deconfined quantum critical point,” Phys. Rev. B 98, 174421 (2018).10.1103/physrevb.98.174421
    [77]
    B. Zhao, P. Weinberg, and A. W. Sandvik, “Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet,” Nat. Phys. 15, 678 (2019).10.1038/s41567-019-0484-x
    [78]
    F. Weickert, A. A. Aczel, M. B. Stone, V. O. Garlea, C. Dong, Y. Kohama, R. Movshovich, A. Demuer, N. Harrison, M. B. Gamża, A. Steppke, M. Brando, H. Rosner, and A. A. Tsirlin, “Field-induced double dome and Bose–Einstein condensation in the crossing quantum spin chain system AgVOAsO4,” Phys. Rev. B 100, 104422 (2019).10.1103/physrevb.100.104422
    [79]
    K. Purcell, D. Graf, M. Kano, J. Bourg, E. Palm, T. Murphy, R. McDonald, C. Mielke, M. M. Altarawneh, C. Petrovic, R. Hu, T. Ebihara, J. Cooley, P. Schlottmann, and S. W. Tozer, “Pressure evolution of a field induced Fermi surface reconstruction and of the Neel critical field in CeIn3,” Phys. Rev. B 79, 214428 (2009).10.1103/physrevb.79.214428
    [80]
    Y. Tokunaga, A. Orlova, N. Bruyant, D. Aoki, H. Mayaffre, S. Krämer, M. H. Julien, C. Berthier, M. Horvatić, N. Higa, T. Hattori, H. Sakai, S. Kambe, and I. Sheikin, “High-field phase diagram of the heavy-fermion metal CeIn3: Pulsed-field NMR study on single crystals up to 56 T,” Phys. Rev. B 99, 085142 (2019).10.1103/physrevb.99.085142
    [81]
    K. Kodama, M. Takigawa, M. Horvatić, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila, “Magnetic superstructure in the two-dimensional quantum antiferromagnet SrCu2(BO3)2,” Science 298, 395 (2002).10.1126/science.1075045
    [82]
    M. Takigawa, M. Horvatić, T. Waki, S. Krämer, C. Berthier, F. Lévy-Bertrand, I. Sheikin, H. K. Y. Ueda, and F. Mila, “Incomplete Devil’s staircase in the magnetization curve of SrCu2(BO3)2,” Phys. Rev. Lett. 110, 067210 (2013).10.1103/physrevlett.110.067210
    [83]
    M. Takigawa, S. Matsubara, M. Horvatić, C. Berthier, H. Kageyama, and Y. Ueda, “NMR evidence for the persistence of a spin superlattice beyond the 1/8 magnetization plateau in SrCu2(BO3)2,” Phys. Rev. Lett. 101, 037202 (2008).10.1103/physrevlett.101.037202
    [84]
    R. Stern, I. Heinmaa, P. Kuhns, A. Reyes, W. Moulton, H. Dabkowska, and B. Gaulin, “High field 11B NMR study of 1/3 magnetization plateau of 2D quantum spin system SrCu2(BO3)2,” National High Magnetic Field Laboratory, Research Report (2004), https://www.academia.edu/17987882/HIGH_FIELD_11B_NMR_STUDY_OF_1_3_MAGNETIZATION_PLATEAU_OF_2D_QUANTUM_SPIN_SYSTEM_SrCu2_BO3_2.
    [85]
    M. Jaime, R. Daou, S. A. Crooker, F. Weickert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U. S. A. 109, 012404 (2012).10.1073/pnas.1200743109
    [86]
    Y. H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, P. Corboz, A. Honecker, S. R. Manmana, G. R. Foltin, K. P. Schmidt, and F. Mila, “Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T,” Phys. Rev. Lett. 111, 137204 (2013).10.1103/physrevlett.111.137204
    [87]
    K. Nawa, M. Takigawa, M. Yoshida, and K. Yoshimura, “Anisotropic spin fluctuations in the quasi one-dimensional frustrated magnet LiCuVO4,” J. Phys. Soc. Jpn. 82, 094709 (2013).10.7566/jpsj.82.094709
    [88]
    N. Büttgen, K. Nawa, T. Fujita, M. Hagiwara, P. Kuhns, A. Prokofiev, A. P. Reyes, L. E. Svistov, K. Yoshimura, and M. Takigawa, “Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet LiCuVO4,” Phys. Rev. B 90, 134401 (2014).10.1103/physrevb.90.134401
    [89]
    A. Orlova, E. L. Green, J. M. Law, D. I. Gorbunov, G. Chanda, S. Krämer, M. Horvatić, R. K. Kremer, J. Wosnitza, and G. L. J. A. Rikken, “Nuclear magnetic resonance signature of the spin-nematic phase in LiCuVO4 at high magnetic fields,” Phys. Rev. Lett. 118, 247201 (2017).10.1103/physrevlett.118.247201
    [90]
    Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon, and Z. Hiroi, “Possible observation of quantum spin-nematic phase in a frustrated magnet,” Proc. Natl. Acad. Sci. U. S. A. 116, 10686 (2019).10.1073/pnas.1821969116
    [91]
    G. L. Kuang and S. F. Shao, “The technologies and scientific researches of steady high magnetic field,” Sci. Sin. 44, 1049 (2014) (in Chinese).10.1360/sspma2014-00157
    [92]
    X. Han, T. Peng, H. Ding, T. Ding, Z. Zhu, Z. Xia, J. Wang, J. Han, Z. Ouyang, Z. Wang, Y. Han, H. Xiao, Q. Cao, Y. Lv, Y. Pan, and L. Li, “The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center,” Matter Radiat. Extremes 2, 278 (2017).10.1016/j.mre.2017.10.002
    [93]
    L. Garrido and N. Beckmann, New Applications of NMR in Drug Discovery and Development (Royal Society of Chemistry, Cambridge, 2013).
    [94]
    A. G. Palmer, “NMR characterization of the dynamics of biomacromolecules,” Chem. Rev. 104, 3623 (2004).10.1021/cr030413t
    [95]
    R. D. A. Alvares, A. Hasabnis, R. S. Prosser, and P. M. Macdonald, “Quantitative detection of PEGylated biomacromolecules in biological fluids by NMR,” Anal. Chem. 88, 3730 (2016).10.1021/acs.analchem.5b04565
    [96]
    M. J. Duer, Solid State NMR Spectroscopy: Principles and Applications (Blackwell Science Ltd, Osney Mead, Oxford, 2002).
    [97]
    C. Bonhomme, C. Gervais, and D. Laurencin, “Recent NMR developments applied to organic–inorganic materials,” Prog. Nucl. Magn. Reson. Spectrosc. 77, 1 (2014).10.1016/j.pnmrs.2013.10.001
    [98]
    The late Amsterdam 40 T magnet, Universiteit van Amsterdam, https://iop.fnwi.uva.nl/cmp/klaasse/amsterdam40t.html, 1959–2003.
    [99]
    F. Herlach and N. Miura, High Magnetic Fields: Science and Technology (World Science Publishing Co. Pte. Ltd., Singapore, 2003).
    [100]
    L. J. Campbell, H. J. Boenig, D. G. Rickel, J. B. Schillig, H. J. Schneider-Muntau, and J. R. Sims, “The NHMFL long-pulse magnet system-60-100 T,” Physica B. 216, 218 (1996).10.1016/0921-4526(95)00476-9
    [101]
    R. Grössinger, H. Sassik, O. Mayerhofer, E. Wagner, and M. Schrenk, “Austromag: Pulsed magnetic fields beyond 40 T,” Physica B. 346-347, 609 (2004).10.1016/j.physb.2004.01.067
    [102]
    H. Ding, J. Hu, W. Liu, Y. Xu, C. Jiang, T. Ding, L. Li, X. Duan, and Y. Pan, “Design of a 135 MW power supply for a 50 T pulsed magnet,” IEEE Trans. Appl. Supercond. 22, 5400504 (2012).10.1109/tasc.2012.2183630
    [103]
    H. Xiao, Y. Ma, Y. Lv, T. Ding, S. Zhang, F. Hu, L. Li, and Y. Pan, “Development of a high-stability flat-top pulsed magnetic field facility,” IEEE Trans. Power Electron. 29, 4532 (2014).10.1109/tpel.2013.2285125
    [104]
    Y. Kohama and K. Kindo, “Generation of flat-top pulsed magnetic felds with feedback control approach,” Rev. Sci. Instrum. 86, 104701 (2015).10.1063/1.4931689
    [105]
    S. Zhang, Z. Wang, T. Ding, H. Xiao, J. Xie, and X. Han, “Realization of high-stability flat-top pulsed magnetic fields by a bypass circuit of IGBTs in the active region,” IEEE Trans. Power Electron. 35, 2436 (2020).10.1109/tpel.2019.2931488
    [106]
    F. Jiang, T. Peng, H. Xiao, J. Zhao, Y. Pan, F. Herlach, and L. Li, “Design and test of a flat-top magnetic field system driven by capacitor banks,” Rev. Sci. Instrum. 85, 045106 (2014).10.1063/1.4870410
    [107]
    S. Wang, T. Peng, F. Jiang, S. Jiang, S. Chen, L. Deng, R. Huang, and L. Li, “Upgrade of the pulsed magnetic field system with flat-top at the WHMFC,” IEEE Trans. Appl. Supercond. 30, 4900404 (2020).10.1109/tasc.2020.2969108
    [108]
    H. Gao and Z. Zhang, Nuclear Magnetic Resonance (Wuhan University Press, Wuchang, 2008) (in Chinese).
    [109]
    M. Motokawa, “Physics in high magnetic fields,” Rep. Prog. Phys. 67, 1995 (2004).10.1088/0034-4885/67/11/r02
    [110]
    J. Haase, S. K. Goh, T. Meissner, P. L. Alireza, and D. Rybicki, “High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments,” Rev. Sci. Instrum. 80, 073905 (2009).10.1063/1.3183504
    [111]
    T. Kissikov, R. Sarkar, B. T. Bush, M. Lawson, P. C. Canfield, and N. J. Curro, “Nuclear magnetic resonance probe head design for precision strain control,” Rev. Sci. Instrum. 88, 103902 (2017).10.1063/1.5002631
    [112]
    Q.-Y. Liu, J.-F. Wang, H.-K. Zuo, M. Yang, and X.-T. Han, “Electrical transport measurement system in pulsed high magnetic field based on rotation sample rod,” Acta Phys. Sin. 68, 230701 (2019) (in Chinese).10.7498/aps.68.20191115
    [113]
    H. Janssen, A. Brinkmann, E. R. H. van Eck, P. J. M. van Bentum, and A. P. M. Kentgens, “Microcoil high-resolution magic angle spinning NMR spectroscopy,” J. Am. Chem. Soc. 128, 8722 (2006).10.1021/ja061350+
    [114]
    A. G. Webb, “Radiofrequency microcoils for magnetic resonance imaging and spectroscopy,” J. Magn. Reson. 229, 55 (2013).10.1016/j.jmr.2012.10.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (277) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return