Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Wu Binbin, Lei Li, Zhang Feng, Tang Qiqi, Liu Shan, Pu Meifang, He Duanwei, Xia Yuanhua, Fang Leiming, Ohfuji Hiroaki, Irifune Tetsuo. Pressure-induced disordering of site occupation in iron–nickel nitrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038401. doi: 10.1063/5.0040041
Citation: Wu Binbin, Lei Li, Zhang Feng, Tang Qiqi, Liu Shan, Pu Meifang, He Duanwei, Xia Yuanhua, Fang Leiming, Ohfuji Hiroaki, Irifune Tetsuo. Pressure-induced disordering of site occupation in iron–nickel nitrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038401. doi: 10.1063/5.0040041

Pressure-induced disordering of site occupation in iron–nickel nitrides

doi: 10.1063/5.0040041
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: lei@scu.edu.cn and flmyaya2008@163.com; a)Authors to whom correspondence should be addressed: lei@scu.edu.cn and flmyaya2008@163.com
  • Received Date: 2020-12-09
  • Accepted Date: 2021-02-19
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • Controlled disordering of substitutional and interstitial site occupation at high pressure can lead to important changes in the structural and physical properties of iron–nickel nitrides. Despite important progress that has been achieved, structural characterization of ternary Fe–Ni–N compounds remains an open problem owing to the considerable technical challenges faced by current synthetic and structural approaches for fabrication of bulk ternary nitrides. Here, iron–nickel nitride samples are synthesized as spherical-like bulk materials through a novel high-pressure solid-state metathesis reaction. By employing a wide array of techniques, namely, neutron powder diffraction, Rietveld refinement methods combined with synchrotron radiation angle-dispersive x-ray diffraction, scanning electron microscopy/energy dispersive x-ray spectroscopy, and transmission electron microscopy, we demonstrate that high-temperature and high-pressure confinement conditions favor substitutional and interstitial site disordering in ternary iron–nickel nitrides. In addition, the effects of interstitial nitrogen atoms and disorderly substituted nickel atoms on the elastic properties of the materials are discussed.
  • loading
  • [1]
    F. Brich, “Elasticity and constitution of the Earth’s interior,” J. Geophys. Res. 57, 227–286, https://doi.org/10.1029/JZ057i002p00227 (1952).10.1029/JZ057i002p00227
    [2]
    F. Brich, “Density and composition of mantle and core,” J. Geophys. Res. 69, 4377–4388, https://doi.org/10.1029/JZ069i020p04377 (1964).10.1029/JZ069i020p04377
    [3]
    O. L. Anderson, “The Earth’s core and the phase diagram of iron,” Philos. Trans. R. Soc. London, Ser. A 306, 21–35 (1982).10.1098/rsta.1982.0063
    [4]
    A. Jephcoat and P. Olson, “Is the inner core of the Earth pure iron?,” Nature 325, 332–335 (1987).10.1038/325332a0
    [5]
    K. D. Litasov, A. Shatskiy, D. S. Ponomarev, and P. N. Gavryushkin, “Equations of state of iron nitrides ε-Fe3Nx and γ-Fe4Ny to 30 GPa and 1200 K and implication for nitrogen in the Earth’s core,” J. Geophys. Res. 122, 3574–3584, https://doi.org/10.1002/2017jb014059 (2017).10.1002/2017jb014059
    [6]
    T. Takahashi, W. A. Bassett, and H.-K. Mao, “Isothermal compression of the alloys of iron up to 300 kilobars at room temperature: Iron–nickel alloys,” J. Geophys. Res. 73, 4717–4725, https://doi.org/10.1029/jb073i014p04717 (1968).10.1029/jb073i014p04717
    [7]
    E. Huang, W. A. Bassett, and M. S. Weathers, “Phase relationships in Fe-Ni alloys at high pressures and temperatures,” J. Geophys. Res. 93, 7741–7746, https://doi.org/10.1029/jb093ib07p07741 (1988).10.1029/jb093ib07p07741
    [8]
    H. K. Mao, Y. Wu, L. C. Chen, J. F. Shu, and A. P. Jephcoat, “Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for composition of the core,” J. Geophys. Res. 95, 21737–21742, https://doi.org/10.1029/jb095ib13p21737 (1990).10.1029/jb095ib13p21737
    [9]
    R. J. Hemley and H. K. Mao, “In situ studies of iron under pressure: New windows on the Earth’s core,” Int. Geol. Rev. 43, 1–30 (2001).10.2747/1938-2839.43.1.30
    [10]
    X. G. Diao, A. Y. Takeuchi, F. Garcia, R. B. Scorzelli, and H. R. Rechenberg, “Magnetic properties of perovskite-type Fe–Ni nitrides γ′-(Fe1−xNix)4N (0⩽x⩽0.9),” J. Appl. Phys. 85, 4485–4487 (1999).10.1063/1.370383
    [11]
    M. Schilfgaarde, I. A. Abrikosov, and B. Johansson, “Origin of the Invar effect in iron–nickel alloys,” Nature 400, 46–49 (1999).10.1038/21848
    [12]
    Y. Himuro, Y. Tanaka, I. Ohnuma, R. Kainuma, and K. Ishida, “Phase equilibria and γ′-L12 phase stability in the Ni-rich portion of Ni–Fe–Si and Ni–Fe–Al systems,” Intermetallics 13, 620–630 (2005).10.1016/j.intermet.2004.10.009
    [13]
    X. Wang, W. T. Zheng, H. W. Tian, S. S. Yu, W. Xu, S. H. Meng, X. D. He, J. C. Han, C. Q. Sun, and B. K. Tay, “Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering,” Appl. Surf. Sci. 220, 30–39 (2003).10.1016/s0169-4332(03)00752-9
    [14]
    H. J. Grabke, “The role of nitrogen in the corrosion of iron and steels,” ISIJ Int. 36, 777–786 (1996).10.2355/isijinternational.36.777
    [15]
    A. Morisako, M. Matsumoto, and M. Naoe, “Magnetic anisotropy and soft magnetism of iron nitride thin films prepared by facing‐target sputtering,” J. Appl. Phys. 69, 5619–5621 (1991).10.1063/1.347941
    [16]
    B. C. Frazer, “Magnetic structure of Fe4N,” Phys. Rev. 112, 751–754 (1958).10.1103/physrev.112.751
    [17]
    A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, H. Schilder, and W. Kockelmann, “ε-Fe3N: Magnetic structure, magnetization and temperature dependent disorder of nitrogen,” J. Alloys Compd. 288, 79–87 (1999).10.1016/s0925-8388(99)00150-4
    [18]
    W. W. George and J. A. Berger, “Structure and magnetic properties of some transition metal nitrides,” J. Met. 7, 360–368 (1955).10.1007/BF03377510
    [19]
    R. N. Panda and N. S. Gajbhiye, Magnetic properties of nanocrystalline γ–Fe–Ni–N nitride systems, J. Appl. Phys 86(6), 3295–3302 (1990).10.1029/10.1063/1.371205
    [20]
    L. Lei, L. Zhang, S. Gao, Q. Hu, L. Fang, X. Chen, Y. Xia, X. Wang, H. Ohfuji, Y. Kojima, S. A. T. Redfern, Z. Zeng, B. Chen, D. He, and T. Irifune, “Neutron diffraction study of the structural and magnetic properties of ε-Fe3N1.098 and ε-Fe2.322Co0.678N0.888,” J. Alloys Compd. 752, 99–105 (2018).10.1016/j.jallcom.2018.04.143
    [21]
    R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Hanfland, M. Wessel, R. Dronskowski, D. A. Dzivenko, R. Riedel, and U. Schwarz, “High-pressure, high-temperature single-crystal growth, ab initio electronic structure calculations, and equation of state of ε-Fe3N1+x,” Chem. Mater. 21, 392–398 (2009).10.1021/cm802721k
    [22]
    K. Guo, D. Rau, L. Toffoletti, C. Müller, U. Burkhardt, W. Schnelle, R. Niewa, and U. Schwarz, “Ternary metastable nitrides ε-Fe2TMN (TM = Co, Ni): High-pressure, high-temperature synthesis, crystal structure, thermal stability, and magnetic properties,” Chem. Mater. 24, 4600–4606 (2012).10.1021/cm3031297
    [23]
    L. Lei and L. Zhang, “Recent advance in high-pressure solid-state metathesis reactions,” Matter Radiat. Extremes 3, 95–103 (2018).10.1016/j.mre.2017.12.003
    [24]
    W. Yin, L. Lei, X. Jiang, P. Liu, F. Liu, Y. Li, F. Peng, and D. He, “High pressure synthesis and properties studies on spherical bulk ε-Fe3N,” High Pressure Res. 34, 317–326 (2014).10.1080/08957959.2014.944910
    [25]
    L. Zhang, S. Gao, Q. Hu, L. Qi, L. Feng, and L. Lei, “Synthesis and characterization of spherical-like bulk ε-Fe3−xCoxN (x = 0.0, 0.25, 1.95),” Mater. Chem. Phys. 197, 94–99 (2017).10.1016/j.matchemphys.2017.05.031
    [26]
    L. Qi, L. Lei, Q. Hu, L. Zhang, L. Feng, M. Pu, H. Ohfuji, and T. Irifune, “Strengthening effects of interstitial nitrogen on rhenium,” J. Appl. Phys. 123, 055911 (2018).10.1063/1.5010834
    [27]
    X. Jiang, L. Lei, Q. Hu, Z. C. Feng, and D. He, “High-pressure Raman spectroscopy of Re3N crystals,” Solid State Commun. 201, 107–110 (2015).10.1016/j.ssc.2014.10.031
    [28]
    S. Wang, H. Ge, S. Sun, J. Zhang, F. Liu, X. Wen, X. Yu, L. Wang, Y. Zhang, H. Xu, J. C. Neuefeind, Z. Qin, C. Chen, C. Jin, Y. Li, D. He, and Y. Zhao, “A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications,” J. Am. Chem. Soc. 137, 4815–4822 (2015).10.1021/jacs.5b01446
    [29]
    Choong-Shik Yoo, “Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids,” Matter Radiat. Extremes 5(018202), (2020), 018202-1-018202-14.10.1063/1.5127897
    [30]
    H. Ohfuji and M. Yamamoto, “EDS quantification of light elements using osmium surface coating,” J. Miner. Petrol. Sci. 110, 189–195 (2015).10.2465/jmps.141126
    [31]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676, https://doi.org/10.1029/jb091ib05p04673 (1986).10.1029/jb091ib05p04673
    [32]
    A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Pressure Res. 14, 235 (1996).10.1080/08957959608201408
    [33]
    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani and Y. Ohishi“New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8, Matter Radiat. Extremes, 5(018403) (2020) 018403-1-018403-10.10.1063/1.5126038
    [34]
    J. Rodriguez-Carvajal, An Introduction to the Program FullProf 2000 (Laboratoire Le ón Brillouin, CEA-CNRS: Saclay, France, 2001).
    [35]
    K. B. Zhang, Z. Y. Fu, J. Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, “Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy,” J. Alloys Compd. 502, 295–299 (2010).10.1016/j.jallcom.2009.11.104
    [36]
    A. Epishin, T. Link, U. Brückner, B. Fedelich, and P. Portella, “Effects of segregation in nickel-base superalloys: Dendritic stresses,” Superalloys, 537–543 (2004).10.7449/2004/Superalloys_2004_537_543
    [37]
    L. Lei and D. He, “Synthesis of GaN crystals through solid-state metathesis reaction under high pressure,” Cryst. Growth Des. 9, 1264–1266 (2009).10.1021/cg801017h
    [38]
    L. Lei, W. Yin, X. Jiang, S. Lin, and D. He, “Synthetic route to metal nitrides: High-pressure solid-state metathesis reaction,” Inorg. Chem. 52, 13356–13362 (2013).10.1021/ic4014834
    [39]
    L. Xie, X. Chen, L. Fang, G. Sun, C. Xie, B. Chen, H. Li, V. A. Ulyanov, V. A. Solovei, M. R. Kolkhidashvili, A. P. Bulkin, S. I. Kalinin, Y. Wang, and X. Wang, “Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR,” Nucl. Instrum. Methods Phys. Res., Sect. A 915, 31–35 (2019).10.1016/j.nima.2018.10.002
    [40]
    Q. Hu, L. Fang, Q. Li, X. Li, X. Chen, L. Xie, J. Zhang, F. Liu, L. Lei, G. Sun, and D. He, “Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in situ neutron diffraction,” High Pressure Res. 39, 655–665 (2019).10.1080/08957959.2019.1666841
    [41]
    L.-h. Feng, Q.-w. Hu, L. Lei, L.-m. Fang, L. Qi, L.-l. Zhang, M.-f. Pu, Z.-l. Kou, F. Peng, X.-p. Chen, Y.-h. Xia, Y. Kojima, H. Ohfuji, D.-w. He, B. Chen, and T. Irifune, “Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides,” Chin. Phys. B 27, 026201 (2018).10.1088/1674-1056/27/2/026201
    [42]
    A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005).10.2320/matertrans.46.2817
    [43]
    G. Wang, Q. Hu, K. Kokko, B. Johansson, and L. Vitos, “Ab initio investigation of the elastic properties of Ni3Fe,” Phys. Rev. B 88, 174205 (2013).10.1103/physrevb.88.174205
    [44]
    P. Monachesi, T. Björkman, T. Gasche, and O. Eriksson, “Electronic structure and magnetic properties of Mn, Co, and Ni substitution of Fe in Fe4N,” Phys. Rev. B 88, 054420 (2013).10.1103/physrevb.88.054420
    [45]
    E. Huang, W. A. Bassett, and M. S. Weathers, “Phase diagram and elastic properties of Fe30%Ni alloy by synchrotron radiation,” J. Geophys. Res. 97, 4497–4502, https://doi.org/10.1029/92JB00020 (1992).10.1029/92JB00020
    [46]
    K. Guo, D. Rau, J. von Appen, Y. Prots, W. Schnelle, R. Dronskowski, R. Niewa, and U. Schwarz, “High pressure high-temperature behavior and magnetic properties of Fe4N: Experiment and theory,” High Pressure Res. 33, 684–696 (2013).10.1080/08957959.2013.809715
    [47]
    J. F. Adler and Q. Williams, “A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core,” J. Geophys. Res. 110, B01203, https://doi.org/10.1029/2004jb003103 (2005).10.1029/2004jb003103
    [48]
    R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Wessel, M. Hanfland, R. Dronskowski, and U. Schwarz, “High-pressure high-temperature phase transition of γ′-Fe4N,” J. Alloys Compd. 480, 76–80 (2009).10.1016/j.jallcom.2008.09.178
    [49]
    T. Gressmann, M. Wohlschlögel, S. Shang, U. Welzel, A. Leineweber, E. J. Mittemeijer, and Z.-K. Liu, “Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1−y layers on α-Fe: First-principles calculations and diffraction stress measurements,” Acta Mater. 55, 5833–5843 (2007).10.1016/j.actamat.2007.07.001
    [50]
    K. D. Litasov, A. F. Shatskiy, S. G. Ovchinnikov, Z. I. Popov, D. S. Ponomarev, and E. Ohtani, “Phase transformations of Fe3N-Fe4N iron nitrides at pressures up to 30 GPa studied by in situ X-ray diffractometry,” JETP Lett. 98, 805–808 (2014).10.1134/s0021364013250140
    [51]
    W. H. Zhang, Z. Q. Lv, Z. P. Shi, S. H. Sun, Z. H. Wang, and W. T. Fu, “Electronic, magnetic and elastic properties of ε-phases Fe3X(X=B, C, N) from density-functional theory calculations,” J. Magn. Magn. Mater. 324, 2271–2276 (2012).10.1016/j.jmmm.2012.02.114
    [52]
    Y.-J. Shi, Y.-L. Du, and G. Chen, “First-principles study on the elastic and electronic properties of hexagonal ε-Fe3N,” Comput. Mater. Sci. 67, 341–345 (2013).10.1016/j.commatsci.2012.09.012
    [53]
    S. Wang, X. Yu, J. Zhang, M. Chen, J. Zhu, L. Wang, D. He, Z. Lin, R. Zhang, K. Leinenweber, and Y. Zhao, “Experimental invalidation of phase-transition-induced elastic softening in CrN,” Phys. Rev. B 86, 064111 (2012).10.1103/physrevb.86.064111
    [54]
    M.-x. Ren, B.-s. Li, and H.-z. Fu, “Formation condition of solid solution type high-entropy alloy,” Trans. Nonferrous Met. Soc. China 23, 991–995 (2013).10.1016/s1003-6326(13)62557-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (123) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return