Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Yang Hong, Gao Shasha, Jiang Baibin, Xie Jun, Liang Juxi, Qi Xiaobo, Wang Kai, Tao Chaoyou, Dai Fei, Lin Wei, Zhang Juan. Analyzing and relieving the thermal issues caused by fabrication details of a deuterium cryogenic target[J]. Matter and Radiation at Extremes, 2021, 6(5): 055901. doi: 10.1063/5.0039131
Citation: Yang Hong, Gao Shasha, Jiang Baibin, Xie Jun, Liang Juxi, Qi Xiaobo, Wang Kai, Tao Chaoyou, Dai Fei, Lin Wei, Zhang Juan. Analyzing and relieving the thermal issues caused by fabrication details of a deuterium cryogenic target[J]. Matter and Radiation at Extremes, 2021, 6(5): 055901. doi: 10.1063/5.0039131

Analyzing and relieving the thermal issues caused by fabrication details of a deuterium cryogenic target

doi: 10.1063/5.0039131
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: goodkai@163.com
  • Received Date: 2020-11-30
  • Accepted Date: 2021-07-22
  • Available Online: 2021-09-01
  • Publish Date: 2021-09-15
  • In inertial confinement fusion experiments, fuel quality is determined mainly by the thermal environment of the capsule in the layering procedure. Owing to the absence of a radial thermal gradient, formed deuterium–deuterium (DD) ice shells in the capsule are thermally instable. To obtain a solid DD layer with good quality and long lifetime, stringent demands must be placed on the thermal performance of cryogenic targets. In DD cryogenic target preparation, two issues arise, even after the capsule’s temperature uniformity has been improved by the use of thick aluminized films. The first is the inconsistent ice shape, which is related to the capsule’s thermal field. In this article, some typical fabrication details are investigated, including adhesive penetration during assembly, the presence of the fill tube, the optical properties of the hohlraum and film surfaces, the jacket–hohlraum connection, deviations in capsule location, and asymmetrical contact at the arm–jacket interfaces. Detailed comparisons of the thermal effects of these factors provide guidance for target optimization. The second issue is the instability of seeding crystals in the fill tube due to unsteadiness of the direction of the thermal gradient in the fill tube assembly. An additional thermal controller is proposed, analyzed, and optimized to provide robust controllability of tube temperature. The analysis results and optimization methods presented in this article should not only help in dealing with thermal issues associated with DD cryogenic targets, but also provide important references for engineering design of other cryogenic targets.
  • loading
  • [1]
    T. C. Sangster, R. Betti, R. S. Craxton et al., “Cryogenic DT and D2 targets for inertial confinement fusion,” Phys. Plasmas 14(5), 058101 (2007).10.1063/1.2671844
    [2]
    D. R. Harding, T. C. Sangster, D. D. Meyerhofer et al., “Producing cryogenic deuterium targets for experiments on OMEGA,” Fusion Sci. Technol. 48(3), 1299–1306 (2005).10.13182/fst05-a1079
    [3]
    I. V. Aleksandrova, E. R. Koresheva, and E. L. Koshelev, “Multilevel system for protecting the cryogenic target during its delivery to the focus of high-power laser facility at high repetition rate,” Phys. At. Nucl. 82(7), 1060–1071 (2019).10.1134/s1063778819070019
    [4]
    M. Martin, C. Gauvin, A. Choux et al., “A way to reach the cryogenic’s temperature and roughness requirements for the laser megajoule facility,” Fusion Sci. Technol. 51(4), 747–752 (2007).10.13182/fst07-a1472
    [5]
    S. Baxamusa, J. Field, R. Dylla-Spears et al., “Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries,” J. Appl. Phys. 115(12), 124901 (2014).10.1063/1.4867781
    [6]
    A. J. Martin, R. J. Simms, and S. B. Wineberg, “Beta heating driven deuterium–tritium ice redistribution, modeling studies,” J. Vac. Sci. Technol. A 7(3), 1157–1160 (1989).10.1116/1.576245
    [7]
    S. O. Kucheyev and A. V. Hamza, “Condensed hydrogen for thermonuclear fusion,” J. Appl. Phys. 108(9), 091101 (2010).10.1063/1.3489943
    [8]
    S. W. Haan, J. D. Lindl, D. A. Callahan et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18(5), 051001 (2011).10.1063/1.3592169
    [9]
    H. Yang, C. Y. Tao, S. S. Gao et al., “Predicting spherical symmetry degeneration of non-infrared deuterium ice layer in a cryogenic capsule,” Nucl. Fusion 60(2), 026010 (2020).10.1088/1741-4326/ab5d5f
    [10]
    R. A. London, J. D. Moody, J. J. Sanchez et al., “Thermal infrared exposure of cryogenic indirect drive ICF targets,” Fusion Sci. Technol. 49, 581–587 (2006).10.13182/fst06-a1171
    [11]
    G. Moll, M. Martin, and P. Baclet, “Thermal simulations of the LMJ cryogenic target,” Fusion Sci. Technol. 51(4), 737–746 (2007).10.13182/fst51-737
    [12]
    X. Huang, S. M. Peng, X. S. Zhou et al., “Thermal simulations of the hohlraum cryogenic target: Low-mode control and parameter optimization,” Fusion Sci. Technol. 68(4), 788–796 (2015).10.13182/fst15-142
    [13]
    Y. Sun, G. Zhou, Q. Li et al., “Numerical investigation on the temperature control of a NIF cryogenic target,” IOP Conf. Ser.: Mater. Sci. Eng. 101(1), 012096 (2015).10.1088/1757-899x/101/1/012096
    [14]
    C. Li, F. C. Guo, Y. Z. Li et al., “Investigation on thermal distribution of cryogenic target with low-temperature thermal contact conductance,” Cryogenics 2019(3), 53–60 (2019).
    [15]
    C. Li, P. W. Chen, J. Zhao et al., “Thermal distribution and cooling performance of cryogenic target under stable and fluctuating cooling conditions,” Fusion Eng. Des. 127(1), 23–33 (2018).10.1016/j.fusengdes.2017.11.027
    [16]
    J. Zhao, Y. Li, and C. Li, “Numerical analysis of dynamic heating modulation during rapid cooling of fuel layer in an indirect-drive cryogenic target,” Prog. Nucl. Energy 114(1), 22–30 (2019).10.1016/j.pnucene.2019.02.004
    [17]
    B. J. Kozioziemski, E. R. Mapoles, J. D. Sater et al., “Deuterium-tritium fuel layer formation for the National Ignition Facility,” Fusion Sci. Technol. 59(1), 14–25 (2011).10.13182/fst10-3697
    [18]
    L. A. Schwalbe, “Recent progress in deuterium triple-point measurements,” J. Phys. Chem. Ref. Data 15(4), 1351 (1986).10.1063/1.555767
    [19]
    A. E. Rungasamy, K. J. Craig, and J. P. Meyer, “3-D CFD modeling of a slanted receiver in a compact linear fresnel plant with etendue-matched mirror field,” Energy Procedia 69(1), 188–197 (2015).10.1016/j.egypro.2015.03.022
    [20]
    E. S. Myra and W. D. Hawkins, “A comparison study of discrete-ordinates and flux-limited diffusion methods for modeling radiation transport,” High Energy Density Phys. 9(1), 91–102 (2013).10.1016/j.hedp.2012.10.007
    [21]
    X.-L. Wei, T.-M. Xu, and S.-E. Hui, “Three-dimensional radiation in absorbing-emitting-scattering medium using the discrete-ordinates approximation,” J. Therm. Sci. 7(4), 255–263 (1998).10.1007/s11630-998-0035-8
    [22]
    Z. Chi, L. Hanqin, L. Yinsheng et al., “Development of calculation of thermal conductivity of silicon carbide,” J. Chin. Ceram. Soc. 43(3), 268–275 (2015).10.14062/j.issn.0454-5648.2015.03.03
    [23]
    N. J. Simon, E. S. Drexler, and R. P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph, Vol. 177 (National Institute of Standards and Technology, 1992).
    [24]
    A. A. Chernov, B. J. Kozioziemski, J. A. Koch et al., “Single crystal growth and formation of defects in deuterium-tritium layers for inertial confinement nuclear fusion,” Appl. Phys. Lett. 94(6), 064105 (2009).10.1063/1.3080655
    [25]
    K. Wang, H. L. Lei, J. Li et al., “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332(28), 9–13 (2014).10.1016/j.optcom.2014.06.066
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(2)

    Article Metrics

    Article views (112) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return