Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Wang Peng, Zhang Chen, Jiang Shaoen, Duan Xiaoxi, Zhang Huan, Li LiLing, Yang Weiming, Liu Yonggang, Li Yulong, Sun Liang, Liu Hao, Wang Zhebin. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6(3): 035902. doi: 10.1063/5.0039062
Citation: Wang Peng, Zhang Chen, Jiang Shaoen, Duan Xiaoxi, Zhang Huan, Li LiLing, Yang Weiming, Liu Yonggang, Li Yulong, Sun Liang, Liu Hao, Wang Zhebin. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6(3): 035902. doi: 10.1063/5.0039062

Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF

doi: 10.1063/5.0039062
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: jiangshn@vip.sina.com and zhebinw@vip.sina.com; a)Authors to whom correspondence should be addressed: jiangshn@vip.sina.com and zhebinw@vip.sina.com
  • Received Date: 2020-11-30
  • Accepted Date: 2021-02-14
  • Available Online: 2021-05-01
  • Publish Date: 2021-05-15
  • In inertial confinement fusion (ICF), polycrystalline diamond—referred to as high density carbon (HDC)—has become a promising ablator candidate. However, with smaller grain size and lower initial density, the equation of state (EOS) for HDC can deviate from that for single-crystal diamond, which could be a concern for ICF designs, but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility. Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm3 at pressures of 17–26 Mbar. Combined with experimental data reported for nanocrystalline diamond (NCD), a stiffer compressibility of NCD due to lower initial density is confirmed. Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases. Also, the effect of temperature on the Grüneisen parameter, which is usually neglected, might need to be considered for NCD under these conditions. The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS.
  • loading
  • [1]
    J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [2]
    J. Lindl, O. Landen, J. Edwards, and E. Moses, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [3]
    J. L. Kline, S. H. Batha, L. R. Benedetti, D. Bennett, S. Bhandarkar et al., “Progress of indirect drive inertial confinement fusion in the United States,” Nucl. Fusion 59, 112018 (2019).10.1088/1741-4326/ab1ecf
    [4]
    A. J. MacKinnon, N. B. Meezan, J. S. Ross, S. Le Pape, L. Berzak Hopkins et al., “High-density carbon ablator experiments on the National Ignition Facility,” Phys. Plasmas 21, 056318 (2014).10.1063/1.4876611
    [5]
    N. B. Meezan, L. F. Berzak Hopkins, S. Le Pape, L. Divol, A. J. MacKinnon et al., “Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums,” Phys. Plasmas 22, 062703 (2015).10.1063/1.4921947
    [6]
    P. Amendt, D. D. Ho, and O. S. Jones, “High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum,” Phys. Plasmas 22, 040703 (2015).10.1063/1.4918951
    [7]
    M. J. Edwards, P. K. Patel, J. D. Lindl, L. J. Atherton, S. H. Glenzer et al., “Progress towards ignition on the National Ignition Facility,” Phys. Plasmas 20, 070501 (2013).10.1063/1.4816115
    [8]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008
    [9]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R. Dittrich et al., “The high-foot implosion campaign on the National Ignition Facility,” Phys. Plasmas 21, 056314 (2014).10.1063/1.4874330
    [10]
    J. L. Kline, S. A. Yi, A. N. Simakov, R. E. Olson, D. C. Wilson et al., “First beryllium capsule implosions on the National Ignition Facility,” Phys. Plasmas 23, 056310 (2016).10.1063/1.4948277
    [11]
    E. N. Loomis, S. A. Yi, G. A. Kyrala, J. Kline, A. Simakov et al., “Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility,” Phys. Plasmas 25, 072708 (2018).10.1063/1.5040995
    [12]
    A. B. Zylstra, J. E. Ralph, S. MacLaren, S. A. Yi, G. Kyrala et al., “Beryllium implosions at smaller case-to-capsule ratio on NIF,” High Energy Density Phys. 34, 100747 (2020).10.1016/j.hedp.2020.100747
    [13]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol, A. Pak, E. L. Dewald et al., “Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility,” Phys. Rev. Lett. 120, 245003 (2018).10.1103/physrevlett.120.245003
    [14]
    L. B. Hopkins, S. LePape, L. Divol, A. Pak, E. Dewald et al., “Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF),” Plasma Phys. Control. Fusion 61, 014023 (2019).10.1088/1361-6587/aad97e
    [15]
    O. A. Hurricane, D. A. Callahan, P. T. Springer, M. J. Edwards, P. Patel et al., “Beyond alpha-heating: Driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility,” Plasma Phys. Control. Fusion 61, 014033 (2019).10.1088/1361-6587/aaed71
    [16]
    S. J. Ali, P. M. Celliers, S. Haan, T. R. Boehly, N. Whiting et al., “Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry,” Phys. Plasmas 25, 092708 (2018).10.1063/1.5047943
    [17]
    D. D.-M. Ho, S. W. Haan, J. D. Salmonson, D. S. Clark, J. D. Lindl et al., “Implosion configurations for robust ignition using high density carbon NIF,” J. Phys.: Conf. Ser. 717, 012023 (2016).10.1088/1742-6596/717/1/012023
    [18]
    K. L. Baker, C. A. Thomas, D. T. Casey, S. Khan, B. K. Spears et al., “High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility,” Phys. Rev. Lett. 121, 135001 (2018).10.1103/physrevlett.121.135001
    [19]
    D. T. Casey, C. A. Thomas, K. L. Baker, B. K. Spears, M. Hohenberger et al., “The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling,” Phys. Plasmas 25, 056308 (2018).10.1063/1.5019741
    [20]
    J. D. Lindl, S. W. Haan, O. L. Landen, A. R. Christopherson, and R. Betti, “Progress toward a self-consistent set of 1D ignition capsule metrics in ICF,” Phys. Plasmas 25, 122704 (2018).10.1063/1.5049595
    [21]
    J. Biener, P. B. Mirkarimi, J. W. Tringe, S. L. Baker, Y. Wang et al., “Diamond ablators for inertial confinement fusion,” Fusion Sci. Technol. 49, 737 (2006).10.13182/fst49-737
    [22]
    J. Biener, D. D. Ho, C. Wild, E. Woerner, M. M. Biener et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001
    [23]
    C. Dawedeit, S. O. Kucheyev, S. J. Shin, T. M. Willey, M. Bagge-Hansen et al., “Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments,” Diamond Relat. Mater. 40, 75 (2013).10.1016/j.diamond.2013.10.001
    [24]
    D. K. Bradley, J. H. Eggert, D. G. Hicks, P. M. Celliers, S. J. Moon et al., “Shock compressing diamond to a conducting fluid,” Phys. Rev. Lett. 93, 195506 (2004).10.1103/physrevlett.93.195506
    [25]
    D. G. Hicks, T. R. Boehly, P. M. Celliers, D. K. Bradley, J. H. Eggert et al., “High-precision measurements of the diamond Hugoniot in and above the melt region,” Phys. Rev. B 78, 843317 (2008).10.1103/physrevb.78.174102
    [26]
    J. H. Eggert, D. G. Hicks, P. M. Celliers, D. K. Bradley, R. S. McWilliams et al., “Melting temperature of diamond at ultrahigh pressure,” Nat. Phys. 6, 40 (2009).10.1038/nphys1438
    [27]
    K. Katagiri, N. Ozaki, K. Miyanishi, N. Kamimura, Y. Umeda et al., “Optical properties of shock-compressed diamond up to 550 GPa,” Phys. Rev. B 101, 184106 (2020).10.1103/physrevb.101.184106
    [28]
    H. Nagao, K. G. Nakamura, K. Kondo, N. Ozaki, K. Takamatsu et al., “Hugoniot measurement of diamond under laser shock compression up to 2 TPa,” Phys. Plasmas 13, 052705 (2006).10.1063/1.2205194
    [29]
    S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig et al., “Laser-shock compression of diamond and evidence of a negative-slope melting curve,” Nat. Mater. 6, 274 (2007).10.1038/nmat1863
    [30]
    N. A. Romero and W. D. Mattson, “Density-functional calculation of the shock Hugoniot for diamond,” Phys. Rev. B 76, 214113 (2007).10.1103/physrevb.76.214113
    [31]
    A. A. Correa, L. X. Benedict, D. A. Young, E. Schwegler, and S. A. Bonev, “First-principles multiphase equation of state of carbon under extreme conditions,” Phys. Rev. B 78, 024101 (2008).10.1103/physrevb.78.024101
    [32]
    M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322, 1822 (2008).10.1126/science.1165278
    [33]
    K. Katagiri, N. Ozaki, Y. Umeda, T. Irifune, N. Kamimura et al., “Shock response of full density nanopolycrystalline diamond,” Phys. Rev. Lett. 125, 185701 (2020).10.1103/physrevlett.125.185701
    [34]
    M. C. Gregor, D. E. Fratanduono, C. A. McCoy, D. N. Polsin, A. Sorce et al., “Hugoniot and release measurements in diamond shocked up to 26 Mbar,” Phys. Rev. B 95, 144114 (2017).10.1103/physrevb.95.144114
    [35]
    M. C. Gregor, “The shock and release behaviors of diamond at terapascal pressures,” Ph.D. dissertation (University of Rochester, Rochester, 2017).
    [36]
    S. W. Li, R. Q. Yi, X. H. Jiang, X. A. He, Y. L. Chui et al., “Experimental study of radiation temperature for gold hohlraum heated with 1 ns, 0.35 μm lasers on SG-Ⅲ prototype laser facility,” Acta Phys. Sin. 58, 3255 (2009).10.7498/aps.58.3255
    [37]
    N. J. Hartley, C. Zhang, X. Duan, L. G. Huang, S. Jiang et al., “Dynamically pre-compressed hydrocarbons studied by self-impedance mismatch,” Matter Radiat. Extremes 5, 028401 (2020).10.1063/1.5130726
    [38]
    C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465 (2008).10.1364/ao.47.001465
    [39]
    Z. Wang, X. Jiang, S. Li, H. Zhang, L. Kuang et al., “Passive measurement of radiation driven shock velocity,” High Power Laser Particle Beams 25, 375 (2013).10.3788/HPLPB20132502.0375
    [40]
    F. Wang, S. Jiang, Y. Ding, S. Liu, J. Yang et al., “Recent diagnostic developments at the 100 kJ-level laser facility in China,” Matter Radiat. Extremes 5, 035201 (2020).10.1063/1.5129726
    [41]
    P. M. Celliers, G. W. Collins, D. G. Hicks, and J. H. Eggert, “Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al,” J. Appl. Phys. 98, 113529 (2005).10.1063/1.2140077
    [42]
    M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney et al., “Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique,” J. Appl. Phys. 94, 4420 (2003).10.1063/1.1604967
    [43]
    D. E. Fratanduono, D. H. Munro, P. M. Celliers, and G. W. Collins, “Hugoniot experiments with unsteady waves,” J. Appl. Phys. 116, 033517 (2014).10.1063/1.4890014
    [44]
    X. Duan, Z. Wang, C. Zhang, L. Sun, Q. Ye et al., “A method for impedance-match experiments with unsteady shock loading” (unpublished).
    [45]
    W. Liu, X. Duan, S. Jiang, Z. Wang, L. Sun et al., “Laser-driven shock compression of gold foam in the terapascal pressure range,” Phys. Plasmas 25, 062707 (2018).10.1063/1.5026623
    [46]
    S. P. Lyon, J. D. Johnson, “SESAME: The Los Alamos National Laboratory equation of state database,” Los Alamos National Laboratory Technical Report No. LA-UR-92-3407, 1992.
    [47]
    M. Millot, P. M. Celliers, P. A. Sterne, L. X. Benedict, A. A. Correa et al., “Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility,” Phys. Rev. B 97, 144108 (2018).10.1103/physrevb.97.144108
    [48]
    M. C. Marshall, A. E. Lazicki, D. Erskine, R. A. London, D. E. Fratanduono et al., “Developing quartz and molybdenum as impedance-matching standards in the 100-Mbar regime,” Phys. Rev. B 99, 174101 (2019).10.1103/physrevb.99.174101
    [49]
    Q. Wu and F. Jing, “Unified thermodynamic equation-of-state for porous materials in a wide pressure range,” Appl. Phys. Lett. 67, 49 (1995).10.1063/1.115488
    [50]
    Q. Wu and F. Jing, “Thermodynamic equation of state and application to Hugoniot predictions for porous materials,” J. Appl. Phys. 80, 4343 (1996).10.1063/1.363391
    [51]
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High-Velocity Impact Phenomena, edited by R. Kinslow (Academic Press, New York, 1970).
    [52]
    K. Nagayama, “Formulation of the Rice-Walsh equation of state based on shock Hugoniot data for porous metals,” J. Appl. Phys. 119, 195901 (2016).10.1063/1.4950881
    [53]
    O. L. Anderson, “The Grüneisen ratio for the last 30 years,” Geophys. J. Int. 143, 279 (2000).10.1046/j.1365-246x.2000.01266.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (237) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return